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Abstract
The paper considers control system design for linearized three-dimensional perturbations about a nominal laminar boundary
layer over a flat plate (the Blasius profile). The objective is prevention of the laminar to turbulent transition using appropriate
inputs, outputs, and feedback controllers. They are synthesized with a view to reducing transient energy growth, a known
precursor to important transition scenarios. The linearized Navier–Stokes equations are reduced to the Orr–Sommerfeld and
Squire equations with wall-normal velocity actuation entering through the boundary conditions on the wall. The sensor output
is taken to be the wall-normal derivative of the wall-normal vorticity measured on the plate. Several multivariable output
controllers are examined, including simple constant gain output feedback, loop transfer recovery, and H∞ loop shaping.
Reduced order compensators are developed using balanced truncation and analyzed for robustness using the gap metric
between reduced order models and full order models. It is demonstrated that the level of minimum transient energy growth
that can be achieved is similar for these diverse controller methodologies but falls short of that which can be achieved using
optimal state feedback.

Keywords Blasius boundary layer · Transition control · Robust control

1 Introduction

It is well known that the drag force on a body immersed
in an unseparated flow strongly depends on the behavior of
the boundary layer. In particular, laminar boundary layers
produce less drag than turbulent ones. Hence, prevention of
transition between the two flow regimes from occurring is an
important problem. Transition has historically been studied
by linearizing the Navier–Stokes equations about a nomi-
nal velocity profile consisting of a baseline laminar flow and
addressing the stability of small perturbations [1, 2]. This
profile has typically been taken to be the two-dimensional
Blasius solution [3] for boundary layer flows over a flat plate.
Using the two-dimensional spatial Fourier transform with
the linearized equations, one arrives at the Orr–Sommerfeld
equation describing the wall-normal velocity component and
the Squire equation describing the wall-normal vorticity
component. The two equations are coupled when the span-
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wise wavenumber is nonzero. Transition can be studied by
determining the eigenvalues of the Orr–Sommerfeld/Squire
model governing the perturbations [1]. Under this linear
scenario, transition corresponds to an eigenvalue crossing
into the right-half of the complex plane creating Tollmien–
Schlichting waves.

Experimentalists have shown that transition typically
occurs at Reynolds numbers (based on distance along the
plate) that are smaller than those predicted by linear eigen-
value theory [1]. It is thought that large transient growth in the
flow perturbations can trigger transition via nonlinear mech-
anisms before the linear instability mechanism occurs [2].
Transient growth in the Blasius boundary layer was studied
by Butler and Farrell [4], who noted that at some Reynolds
numbers, the worst case transient growth occurred at stream-
wise wavenumbers that were zero and nonzero spanwise
wavenumbers.

Both stabilization and suppression of transient growth
have been studied using linear state-state models based
on the Orr–Sommerfeld/Squire system to design feedback
controllers [5]. Much of this work has emphasized plane
Poiseuille flow [6, 7] and the Blasius boundary layer [8, 9].
The Poiseuille flow corresponds to the fully-developed flow
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in a channel between two parallel infinite plates and the Bla-
sius boundary layer is the two-dimensional laminar flow over
a semi-infinite flat plate. This paper will concentrate on the
latter case.

The choice of sensors and actuators and their locations
has a profound effect on the achievable stability, perfor-
mance, and robustness of a feedback strategy. Sensor and
actuator location has been considered by [6] in the Poiseuille
case and [9] in the Blasius case. A very useful paradigm for
robust feedback controller design is passivity-based control.
A companion paper [10] was devoted to determining a sen-
sor/actuator combination that led to a passive input–output
map. The motivation for this was the passivity theorem [11]
which states that the negative feedback interconnection of
a passive system and a strictly passive system (with finite
gain) is L2-stable, that is, L2 (finite energy) inputs produce
L2 (finite energy) outputs. In earlier work [12], we studied
the passivity property in the context of the Orr–Sommerfeld
equation with actuation inputs implemented as wall-normal
velocity. A dual output (based on energy analysis) was shown
to be the second spatial derivative (normal direction) of the
streamwise velocity perturbation at the wall. Other authors
[13, 14] have used passivity ideas in the stabilization of a
Poiseuille flowwhere dynamic linear controller designs were
employed to render the closed-loop system to be passive.

In our previous work [10], the analysis was carried out
in three spatial dimensions using both the Orr–Sommerfeld
and Squire equations. Passivity of the system mapping
wall-normal velocity inputs to three spatial derivatives (in
the wall-normal direction) of the wall-normal velocity as
the output was shown to be passive when the streamwise
wavenumber is zero. This is precisely the case correspond-
ing to largest transient growth at certain Reynolds numbers
as identified in [4]. Unfortunately, this passive output does
not render the wall-normal vorticity states observable. For
this reason, we introduce an alternative output in this paper,
namely one spatial derivative (wall-normal direction) of the
wall-normal vorticity evaluated on the wall. This is obtain-
able from shear-stress measurements on the wall.

Spatial discretization of the Orr–Sommerfeld and Squire
equations will be accomplished using Hermite cubic finite
elements to describe the wall-normal velocity and vortic-
ity components. This approach was originally used for the
Orr–Sommerfeld equation with Poiseuille flows in [15].
Our controller studies examine the following control system
design paradigms: state feedback using the linear quadratic
regulator (LQR), output feedback designs based on a single
scalar feedback gain, linear quadratic gaussian/loop transfer
recovery (LQG/LTR), and H∞ loop shaping, and reduced
order designs based onmodel order reduction using balanced
truncation. Robustness of this latter control solution is ana-
lyzed using the gap metric [16, 17]. The second of our major
contributions is a demonstration that the level of minimum

transient energy growth that can be achieved is similar for
these diverse controller methodologies but falls short of that
which can be achieved using optimal state feedback based
on LQR theory. A recent paper by Jones et al. [18] examined
H∞ loop-shaping designs for Poiseuille flow.

Some of the more recent works on the control of boundary
layer transition are [19–24]. Gibeau andGhaemi [19] studied
actuation for boundary layer control using wall normal sur-
face deformation. Methel et al. [20] looked at the impact
of steps and gaps on control using wall normal suction.
Li and Chen [21] examined feedback control of Tollmien–
Schlichting waves using a simple PID controller. In [22],
Gluzman and Gayme developed an input–output framework
for examining the impact of different actuation and sensing
on boundary layer control. O’Connor et al. [24] studied the
optimization of streamwise-varyingwall-normal blowing for
control of turbulent boundary layers. Although our emphasis
is on the flat-plate boundary layer, the ultimate application is
to aircraft lifting surfaces whose state-of-the-art is described
by Svorcan, Wang, and Griffin [23]. It is important to note
that while the papers [8, 9] represent some of the most recent
workon transition control of theBlasius boundary layer using
feedback, they are two-dimensional studies whereas the cur-
rent work considers three-dimensional flow perturbations.

Thepaper is organized as follows. Section 2 examines con-
troller design methods for multivariable linear time-invariant
(LTI) systems. Section 3 develops the Orr–Sommerfeld and
Squire equations and the output described above using the
wall-normal vorticity is shown to be realizable by shear stress
measurements at the wall. Section 4 presents the spatial dis-
cretization of the Orr–Sommerfeld/Squire equation based on
the finite element method. Numerical results are presented
for the case considered by Butler and Farrell [4], namely
a Reynolds number (based on displacement thickness) of
1000, a spanwise wavenumber of 0.65, and a streamwise
wavenumber of zero. Emphasis is placed on computing the
maximum transient energy growth for LQR state feedback
as well as output feedback controllers using the alternative
output based on sensing the wall-normal derivative of the
wall-normal vorticity. These latter cases include simple con-
stant gain output feedback, LQG/LTR, H∞ loop shaping,
and reduced order designs based on model order reduction
of the plant using balanced truncation. Robustness of this lat-
ter control solution is analyzed using the gap metric. Section
5 presents some concluding remarks.

2 Feedback controller design

2.1 Feedback design

The feedback system shown in Fig. 1 is considered where
d1(t), d2(t), m1(t), and m2(t) are functions of time t .

123



Aerospace Systems

+
+e2

d2-ν = m2

d1
e1 G

K

m1
+
−

Fig. 1 Feedback system

The L2-space consists of those functions m for which

the L2-norm satisfies ||m||2 �=
√∫ ∞

0 mT(t)m(t) dt < ∞
(the symbol ( )T denotes the matrix transpose and ( )H

denotes the complex-conjugate transpose). The extended L2-

space, L2e, consists of those functions for which ||m||2T �=√∫ T
0 mT(t)m(t) dt < ∞, 0 ≤ T < ∞. Note that L2 ⊂ L2e.

Consider the system to be controlled m1(t) = (Ge1)(t)
where the operator G : L2e → L2e (possibly nonlinear
and time-varying) maps the input e1 ∈ L2e into the out-
put m1 ∈ L2e. The gain of G is the induced norm on L2 and
is defined to be ||G|| = sup

0 �=e1∈L2

||Ge1||2/||e1||2.
In the case where G is linear time-invariant (LTI) (and

finite dimensional), it can be described using the standard
state-space model

ẋ(t) = Ax(t) + Be1(t) (1)

m1(t) = Cx(t) + De(t) (2)

where ( ˙) denotes the time derivative. This system can
be described using transfer functions: m1(s) = G(s)e1(s)
where m1(s) denotes the Laplace transform of m1(t) (a
common abuse of notation) and G(s) is the system transfer
(function)matrix. The quantity s denotes the complex-valued
Laplace transform variable and i = √−1. Note that

G(s) =
[
A B
C D

]
�= C(s I − A)−1B + D (3)

is the transfer matrix corresponding to the state-space model
in Eqs. (1) and (2). Here, I is the identity matrix of appropri-
ate dimension. If the system is controllable and observable,
then L2-stability ofG (e1 ∈ L2 implies thatm1 = Ge1 ∈ L2)
corresponds to thematrix Ahaving eigenvalueswith negative
real parts. For stable LTI systems, the gain can be shown [25]
to be ||G|| = ||G(s)||∞ = sup

ω∈R
σ̄ [G(iω)] where σ̄ denote

the largest singular value. The systemK in Fig. 1 represents
the controller which we seek to design. A minimal require-
ment would be L2-stability of the closed-loop system, i.e,
d1, d2 ∈ L2 implies that e1, e2,m1,m2 ∈ L2.

2.2 LTI feedback controller design

Consider the case whereG andK correspond to LTI systems
with transfermatricesG(s) = C(s I−A)−1B+D and K (s),
respectively. Considering the closed-loop system depicted
in Fig. 1, we write the closed-loop transfer matrix mapping
(d1, d2) to (e1,m1) by

[G(s), K (s)] �=
[

I
G(s)

]
[I + K (s)G(s)]−1[I −K (s)] (4)

(We will occasionally omit the argument s of transfer matri-
ces.) We will also require the loop shape transfer function
L(s) = K (s)G(s) and make special reference to the (input)
sensitivity function S(s) = [I + K (s)G(s)]−1 which is the
transfer matrix from d1 to e1 when d2 = 0. The matrix
H(s) = G(s)S(s) is the transfer matrix from d1 tom1 when
d2 = 0. It is easily shown that if a square plant G(s) is
perturbed to G(s) + �G(s), then for small perturbations,
the corresponding small change in H(s), �H(s) satisfies
[�H(s)H−1(s)][�G(s)G−1(s)]−1 = S(s).

In the case of a static compensator, m2 = −ν = K̄ e2
where K̄ is a constant matrix,

[G(s), K (s)] =
⎡
⎣
A − B�K D K̄C B�K D −B�K D K̄

−�K D K̄C �K D −�K D K̄
�DKC �DK D −�DK DK̄

⎤
⎦ ,

�K D = [I + K̄ D]−1

�DK = [I + DK̄ ]−1 (5)

Considering strictly proper dynamic compensators of the
form

K (s) = K c(s I − Ac)
−1K e (6)

leads to

[G(s), K (s)] =

⎡
⎢⎢⎣

A −BK c B 0
K eC Ac − K eDK c K eD K e

0 −K c I 0
C −DK c D 0

⎤
⎥⎥⎦ (7)

The upper left 2 × 2 partition (i.e., the closed-loop system
matrix) will be denoted by Āwith corresponding initial con-
ditions x̄(0) = col{x(0), 0} (i.e., quiescent initial condition
for the controller states). In the case of a static compensator,
Ā = A− B�K D K̄C which collapses to A in the open-loop
case.

2.3 Measuring transient growth

Considering the system in Eq. (7) with the exogenous inputs
taken to be d1 = d2 = 0with nonzero initial conditions x(0)
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yields

x(t) = T (t)x(0), T (t) = [I 0] exp( Āt)[I 0]T (8)

It is assumed that the energy of the system is calculated using
the quadratic form

E(t) = 1

2
xT(t)Qx(t) (9)

where Q = QT > 0. The largest transient energy growth
[26] can be calculated by determining the initial conditions
x(0) to maximize the quantity

J = sup
T≥0

sup
x(0)

{
E(T )

E(0)

}
(10)

= sup
T≥0

sup
x(0)

{
xT(0)T T(T )QT (T )x(0)

xT(0)Qx(0)

}
. (11)

This leads to a generalized symmetric eigenproblem (λQx̄ =
T T(T )QT (T )x̄) nested within a search over T ≥ 0. The
maximum eigenvalue λ for given T yields the maximum
energy ratio E(T )/E(0) and the eigenvector x̄ correspond-
ing to it yields the optimal initial condition. The quantity
E(T )/E(0) is then optimizedwith respect to T using a direct
search to determine J .

2.4 The linear quadratic regulator (LQR)

Consider the plant model ẋ = Ax+ Bν (i.e., d1 = d2 = 0).
In an effort to minimize J our baseline controller will be
chosen to minimize the quadratic performance index

JLQR = 1

2

∫ ∞

0

(
xT(t)Qx(t) + νT(t)Rν(t)

)
dt (12)

where the weighting matrices are chosen such that Q is
symmetric and non-negative definite and R is selected
to be symmetric and positive definite. This is the well-
known linear quadratic regulator (LQR) which has the
feedback solution ν(t) = −K LQRx(t) with feedback gain
K LQR = R−1BTPLQR . The matrix P LQR is the solution
of the algebraic Riccati equation P LQR A + AT P LQR −
P LQRBR−1BT P LQR + Q = 0. This equation has a unique
positive-semidefinite solution if (A, B) is stabilizable. In
this case, the transient energy growth can be calculated with
Ā = A − BK LQR . Since this is state feedback, we have
C = I and D = 0, so that LLQR(s) = KLQR(s I − A)−1B
with sensitivity function SLQR(s) = [I + LLQR(s)]−1. It
would be useful to have a dynamic compensator using out-
put feedback which could in some sense “recover” the LQR
performance. This is done in the next section using the Linear

Quadratic Gaussian (LQG)/ Loop Transfer Recovery (LTR)
methodology.

2.5 Loop transfer recovery

The LQG/LTR controller [27] considered here (as well as the
H∞ loop-shaping controllers considered in the next section)
has the form:

K (s) =
[
A − BK c − K eC K e

K c 0

]
(13)

which is an observer-based compensator. It will be assumed
for Sects. 2.5 and 2.6 that the plant is strictly proper (D = 0).
In the loop transfer recovery approach, the following selec-
tions are made: K c = K LQR and K e = PeCT where

PeAT + APe − PeCTCPe + q0BBT = 0

and q0 is a design parameter. If (A, B) is controllable
and (C, A) is observable then L(s) → LLQR(s) and then
S(s) → SLQR(s) (pointwise) as q0 → ∞. An interesting
question that arises is how does the transient growth mea-
sure, J , behave relative to the LQR case as q0 → ∞?

2.6 H∞ design

Clearly, a useful approach to controller design would min-
imize the impact of d1 and d2 on e1 and m1, or in other

words, maximize bG,K
�= ||[G(s), K (s)]||−1∞ . A suboptimal

controller design which yields ||[G(s), K (s)]||∞ < γ for
prescribed γ > 0 is given by [17, 28] K c = BTX where

XA + ATX − XBBTX + CTC = 0 (14)

The controller input matrix or “estimation gain” is given by
K e = −γ 2W−T

1 ZCT where W1 = I + (XZ − γ 2 I) and

ZAT + AZ − ZCTCZ + BBT = 0 (15)

For this to be valid, γ must be selected to be greater than the
optimal value γmin = √

1 + λmax(ZX) = b−1
opt(G) where

bopt(G) = sup
stab K

bG,K (16)

This controller has an interesting robustness interpretation.

2.7 The gapmetric and robustness

Consider a nominal system G1 and a perturbed system G2.
We are interested in knowing, under what conditions, a con-
troller that stabilizes G1 will also stabilize G2. This requires
a metric that can evaluate the distance between G1 and G2
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in some sense. A useful possibility is the gap metric [16],
denoted by δg(G1,G2).

The domain of an operator G is defined here as D(G) =
{e ∈ L2 | Ge ∈ L2}. The graph of G is the collection of
pairs {e,Ge}with e ∈ D(G). Now, consider two LTI systems
represented by the operators G1 and G2 with corresponding
transfermatricesG1(s) andG2(s). The gapmetric describing
the distance between G1 and G2 is defined as

δg = max{
δ(G1,G2), 
δ(G2,G1)}

where the directed gap is defined as


δ(G1,G2) = sup
0 �=e1∈D(G1)

inf
e2∈D(G2)

× (||e2 − e1||22 + ||G2e2 − G1e1||22)1/2
(||e1||22 + ||G1e1||22)1/2

This time-domain calculation is not useful in practice but
there is a frequency-domain calculation that is.

It is known that a real rational transfer matrix admits the
right normalized coprime factorization [29]

G(s) = N(s)M−1(s)

where N(s) and M(s) are real-rational stable transfer func-
tions (i.e., they are real rational and are elements of H∞ and
are normalized such that MT(−s)M(s)+NT(−s)N(s) = I .
Assuming Gi (s) = N i (s)M

−1
i (s), i = 1, 2, are normalized

right coprime factorizations, the directed gap can be calcu-
lated using [30]


δ(G1,G2) = inf
Q(s)∈H∞

∣∣∣∣
∣∣∣∣
(
M1(s)
N1(s)

)
−

(
M2(s)
N2(s)

)
Q(s)

∣∣∣∣
∣∣∣∣∞

This is a calculation for which numerical procedures exist.
In our work, we employ the procedure developed in [31]
and the required normalized right coprime factorizations are
calculated using [29].

As noted in [16] and [17], δ(G1,G2) is a metric and 0 ≤
δ(G1,G2) ≤ 1. To gain some insight into the behavior of
the gap metric, consider the following example from [17]. If
G1(s) = k1/(s + 1) and G2(s) = k2/(s + 1), then

δ(G1,G2) =
⎧
⎨
⎩

|k1−k2||k1|+|k2| , |k1k2| > 1
|k1−k2|√

(1+k21)(1+k22)
, |k1k2| ≤ 1.

The key robustness theorem involving the gap metric is
the following [17]: The system [G1(s), K (s)] is stable for
all G1(s) with δg(G1,G) < b if and only if [G(s), K (s)] is
stable and b < bG,K . Hence, optimal robustness in the gap
metric is obtained by employing a controller K that maxi-
mizes bG,K (G). In our numerical results, wewill employ this

+
+ Wd2

d1 G

K

W

W−1

Gs

Ks

+
−

Fig. 2 Feedback system with loop shaping

theorem to gauge the robustness of reduced order controller
designs based on reduced order models of G.

2.8 H∞ loop shaping

The controller with optimal robustness described in Sect. 2.6
maynot performverywell. To remedy this, one candesign the
above controller for a loop-shaped plant [32]. In our work we
consider the shaped plant Gs(s) = WG(s)whereW = W I ,
W > 0. The stability of the system in Fig. 1 (LTI case) is
the same as the loop-transformed feedback system shown
in Fig. 2. The idea is to design the feedback compensator
K s(s) = K (s)W−1 according to Sect. 2.6 for the shaped
plant Gs(s) which can be realized by simply multiplying the
matrix C by W . The actual controller K (s) can be obtained
from K s(s) by multiplying the matrix K e by W .

2.9 Model order reduction

The controller designs presented above have assumed a full-
order model. Next, a controller with a reduced number of
states is developed by employing a controller design using a
reduced order model. In this paper, we shall employ a two-
step method of model order reduction. First, assume that the
system G(s) has been transformed to modal form. Assuming
D = 0 and the eigenvalues of A, λi , are distinct, the modal
system is given by

G(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0 b̂
H
1

0 λ2 · · · 0 b̂
H
2

...
...

. . .
...

...

0 0 · · · λn b̂
H
n

ĉ1 ĉ2 · · · ĉn 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Assuming distinct eigenvalues, the conditions for modal
controllability and modal observability are ||b̂α|| > 0
and ||ĉα|| > 0. Since the balanced truncation approach
given below assumes controllability and observability, we
begin by obtaining an intermediate-sized model which uses
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modal coordinates and the first 100 modes with the largest
values of ||b̂α|| · ||ĉα||. Hence, they are the most control-
lable/observable as measured by the product of the modal
controllability and observability norms.

For the intermediate-size model (we abuse notation and
assume this system is G(s) = C(s I − A)−1B) consider the
Lyapunov equations

P AT + AP + BBT = 0 (18)

QA + AT P + CTC = 0 (19)

where P and Q are the controllability and observability
gramians, respectively. A state realization in which P and Q
are diagonal and equal is called a balanced realization [33].
In such a representation, the diagonal entries are called the
Hankel singular values, σi = √

λi {P Q}, which are invari-
ants under state transformations. From [34], there exists a
state transformation x̂ = Tx resulting in a new state-space
model with realization

G(s) =
⎡
⎢⎣
Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 0

⎤
⎥⎦ (20)

where

P = Q =
[

�1 0
0 �2

]
(21)

where �1 = diag{σ1, . . . ,
σr } and �2 = diag{σr+1, . . . , σN }. It is assumed that σ1 ≥
σ2 ≥ · · · σr > σr+1 ≥ · · · ≥ σN . A reduced order model
of order r is given by Gr = Ĉ1(s I − Â11)

−1 B̂1 with error
bound

||Gr (s) − G(s)||∞ ≤ 	r
�= 2(σr+1 + . . . σN ) (22)

In computing the upper bound, Hankel singular values with
a multiplicity greater than one are only included once in the
summation. Based on the above results using the gap metric,
if δg(Gr ,G) < bGr ,Kr = ||[Gr (s), K r (s)]||−1∞ , then a sta-
bilizing controller K r (s) for the reduced order model Gr (s)
will also stabilize the full-order model G(s).

3 Dynamical model based on the
Orr–Sommerfeld/Squire equations

3.1 Blasius boundary layer

Let us consider a three-dimensional boundary layer flowfield
occupying the region (x, y, z) ∈ [0,∞]×[0, b]×[−∞,∞]
with a base parallel laminar flow (U (y), 0, 0) and associated

pressure field P(x, y, z, t). The Blasius boundary layer flow
[3] is depicted in Fig. 3. Although b → ∞, a finite computa-
tional boundary for b will be employed as discussed below.
The true boundary layer profile is known to be nonparallel
((U , V , 0), V �= 0), but we shall adopt the approxima-
tion V = 0 and take U (y) to be the Blasius solution:
U (y) = d f (η)/dη (this has been nondimensionalized using
the free-stream velocityU0) where η = yd

√
ρU0/(μxd) (xd ,

yd , and zd refer to dimensional coordinates) and f (η) is the
solution of 2d3 f /dη3 + (d2 f /dη2) f = 0 with d f (0)/dη =
f (0) = 0 and d2 f (0)/dη2 = 0.33205733622 which yields
the correct asymptotic boundary condition d f (η)/dη = 1 as
η → ∞.

A suitable nondimensionalization for the spatial coor-
dinates can be obtained using the displacement thickness
H = δ∗ = 1.7207876573

√
μxd/(ρU0) where the free-

stream velocity is U0. The local Reynolds number will be
denoted by Re = ρU0δ

∗/μwhereρ is the fluid density andμ

is the absolute viscosity. The displacement thickness δ∗ will
nondimensionalize length and U0 will nondimensionalize
velocity. In our numerical work, wewill use a finite computa-
tional domain with b = 24

√
μxd/(ρU0)/H (dimensionless)

and at this boundary an inviscid asymptotic solution will be
imposed.

3.2 Orr–Sommerfeld/Squire equations

Assuming small perturbations u(x, y, z, t), v(x, y, z, t),
w(x, y, z, t), and p(x, y, z, t) about the Blasius flow, the lin-
earized incompressible Navier–Stokes equations [1] are

∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z
= 0 (23)

∂u

∂t
+U

∂u

∂x
+U ′v = −∂ p

∂x
+ 1

Re
∇2u (24)

∂v

∂t
+U

∂v

∂x
= −∂ p

∂ y
+ 1

Re
∇2v (25)

∂w

∂t
+U

∂w

∂x
= −∂ p

∂z
+ 1

Re
∇2w (26)

z, w

x, u

y, v

U(y)
U0

mr mi νr, νi

Fig. 3 Blasius boundary layer
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where U ′(y) = dU (y)/dy and ∇2 = ∂2/∂x2 + ∂2/∂ y2 +
∂2/∂z2. It is assumed that the quantities are nondimensional-
ized using the velocity U0 and distance H and the boundary
conditions are u(x, 0, z, t) = u(x, b, z, t) = v(x, b, z, t) =
w(x, 0, z, t) = w(x, b, z, t) = 0. Our choice of control
variable is taken to be v(x, 0, z, t), which corresponds to
wall-normal blowing and suction.

Introducing the wall-normal vorticity

ζ(x, y, z, t)
�= ∂u

∂z
− ∂w

∂x
(27)

Eqs. (23)-(26) can be simplified [2] to yield equations for the
wall-normal velocity v and vorticity ζ :

−∇2v̇ + {U ∂

∂x
∇2 −U ′′ ∂

∂x
− ∇2∇2/Re}v = 0 (28)

ζ̇ +U ′ ∂v

∂z
+ {U ∂

∂x
− ∇2/Re}ζ = 0 (29)

Introducing the spatial Fourier transform in the x and z direc-
tions,

v(x, y, z, t) = 
e {v̂(y, t) exp[i(αx + βz)]}, (30)

ζ(x, y, z, t) = 
e {ζ̂ (y, t) exp[i(αx + βz)]} (31)

where v̂ and ζ̂ are the complex amplitudes and α, β are the
real wavenumbers, leads to the Orr–Sommerfeld and Squire
equations [2]:

[Mos 0
0 Msq

] [ ˙̂v
˙̂
ζ

]
+

[Kos 0
Kc Ksq

] [
v̂

ζ̂

]
=

[
0
0

]
(32)

where

Mos = − �, Msq = I, � = ∂2/∂ y2 − α2 − β2 (33)

Kos = −iαU� + iαU ′′ + ��/Re (34)

Kc = iβU ′, Ksq = iαU − �/Re (35)

and I is the identity operator.
The boundary conditions are v̂y(0, t) = ζ̂ (0, t) = 0,

v̂y(b, t) = −kv̂(b, t) (the inviscid asymptotic), ζ̂ (b, t) = 0,
and the (real) control inputs are taken to be

ν(t) = [
e {v̂(0, t)} �m{v̂(0, t)}]T = [νr (t) νi (t)]T (36)

(the vector ν should not be confused with the scalar veloc-
ity components u and v; the symbol ν will not be used
in this paper to refer to a fluid’s kinematic viscosity). We
see that the control input ν can ultimately be related to the
wall velocity: v(x, 0, z, t) = 
e {v̂(0, t)} cos(αx + βz) −
�m{v̂(0, t)} sin(αx + βz). It is noted that the control input
provides additional boundary conditions for v̂(0, t).

3.3 Measurements

In the sequel, we will consider measurements obtainable
using shear-stress measurements at the wall. Let us select
the wall-normal derivative of the wall-normal vorticity: ζ̂y =
iβû y − iαŵy . Note that û y and ŵy are available from mea-
surements of the shear stresses τ̂xy(y, t) = μ(iαv̂(y, t) +
û y(y, t)) and τ̂yz(y, t) = μ(iβv̂(y, t) + ŵy(y, t)) at the
wall (y = 0). We shall define the real output in this case as
msq = [
e {ζ̂y(0, t)} �m{ζ̂y(0, t)}]T. This output is moti-
vated by the fact that thewall-normal vorticity states ζ̂ are not
observable from outputs based on v̂ such as those introduced
in [10].Onewayof seeing this is by noting the structure ofEq.
(32) (or its discrete equivalent developed in the next section).
However, there is the potential for v̂ and ζ̂ to be observable
from msq when β �= 0 which follows from the coupling
exhibited by Eq. (32) (or its discrete equivalent developed in
the next section) in this case.

4 Numerical example

4.1 Spatial discretization using finite elements

The spatial discretization of the Orr–Sommerfeld/Squire
equations in Eq. (32) is carried out using the same proce-
dures used in [10]: the y-domain [0, b] is broken into Ne

equally-sized finite elements (width �) with the value of y at
the nodes (element boundaries) denoted by y j = ( j − 1)�,
j = 1, . . . , Ne+1where � = (b−a)/Ne. The value of v̂ and
its derivative at the nodes are denoted by v j (t) = v̂(y j , t)
and v′

j (t) = v̂y(y j , t) with similar definitions for ζ j (t) and
ζ ′
j (t). Within the j th element, the following trial solutions

are assumed:

v̂(y, t) = [1 ŷ ŷ2 ŷ3]

⎡
⎢⎢⎣

1 0 0 0
0 � 0 0

−3 −2� 3 −�

2 � −2 �

⎤
⎥⎥⎦

×[v j (t) v′
j (t) v j+1(t) v′

j+1(t)]T
= YT(ŷ)Lq( j)

os (t) (37)

and

ζ̂ (y, t) = YT(ŷ)Lq( j)
sq (t),

q( j)
sq (t) = [ζ j (t) ζ ′

j (t) ζ j+1(t) ζ ′
j+1(t)]T (38)

where y = ( j − 1+ ŷ)� and ŷ is a local element coordinate
system with 0 ≤ ŷ ≤ 1. This element description was used
by [15] in the case of Poiseuille flow and [10] in the Blasius
case.
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Based on Eq. (37), the finite element description of the
Orr–Sommerfeld solution is given by

v̂(y, t) =
Ne∑
j=1

� j (y)q
( j)
os (t) (39)

ζ̂ (y, t) =
Ne∑
j=1

� j (y)q
( j)
sq (t) (40)

where

� j (y) =
{
YT(ŷ)L, ( j − 1)� ≤ y ≤ j�
0, otherwise.

(41)

In preparation for a weak (variational) solution of the prob-
lem, we introduce variations

δv̂(y, t) =
Ne∑
j=1

� j (y)δq
( j)
os (t),

δζ̂ (y, t) =
Ne∑
j=1

� j (y)δq
( j)
sq (t), (42)

satisfying the boundary conditions

δv̂(a, t) = δv̂′(a, t) = 0, δζ̂ (a, t) = δζ̂ (b, t) = 0 (43)

The upper boundary condition at y = b is taken to be
v̂′(b, t) = −kv̂(b, t) and δv̂′(b, t) = −kδv̂(b, t) which
correspond to the inviscid asymptotic solution of the Orr–
Sommerfeld equation, v̂(y, t) ∝ e−ky .

Premultiplying the Orr–Sommerfeld/Squire equation in
Eq. (32) by [δv̂ δζ̂ ]T followed by integration by parts and
substitution of Eqs. (37)–(40) yields

Ne∑
j=1

δq( j)T
os [Mos,r , j q̇

( j)
os + (K os,r , j + iK os,i, j )q

( j)
os ]

+
Ne∑
j=1

δq( j)T
sq [Msq,r , j q̇

( j)
sq + (K sq,r , j

+iK sq,i, j )q
( j)
sq + iK c,i, jq

( j)
os ] = 0, (44)

where

Mos,r , j = LT
∫ 1

0

[
k2Y(ŷ)YT(ŷ)+ 1

�2

d

dŷ
Y(ŷ)

d

dŷ
YT(ŷ)

]
dŷ L�

K os,r , j = 1

Re
LT

∫ 1

0

[
k4Y(ŷ)YT(ŷ) + 2k2

1

�2

d

dŷ
Y(ŷ)

d

dŷ
YT(ŷ)

+2
1

�4

d2

dŷ2
Y(ŷ)

d2

dŷ2
YT(ŷ)

]
dŷ L�

K os,i, j = αLT
∫ 1

0

{[(k2U (( j − 1 + ŷ)�)

+U ′′(( j − 1 + ŷ)�)]Y(ŷ)YT(ŷ)

+U (( j − 1 + ŷ)�)
1

�2

d

dŷ
Y(ŷ)

d

dŷ
YT(ŷ)

+ 1

�
U ′(( j − 1 + ŷ)�)Y(ŷ)

d

dŷ
YT(ŷ)

}
dŷ L�

Msq,r , j = LT
∫ 1

0

[
Y(ŷ)YT(ŷ)

]
dŷ L�

K c,i, j = βLT
∫ 1

0

[
U ′(( j − 1 + ŷ)�)Y(ŷ)YT(ŷ)

]
dŷ L�

K sq,r , j = 1

Re
LT

∫ 1

0

[
k2Y(ŷ)YT(ŷ)+ 1

�2

d

dŷ
Y(ŷ)

d

dŷ
YT(ŷ)

]
dŷ L�

K sq,i, j = αLT
∫ 1

0

[
U (( j − 1 + ŷ)�)Y(ŷ)YT(ŷ)

]
dŷ L�

Note thatwhen the integration by parts yields terms evaluated
at y = b, additional terms accrue in the matrices Mos,r ,Ne ,
K os,r ,Ne , and K os,i,Ne .

Defining q̂os = [v1 v′
1 · · · vNe+1 v′

Ne+1]T, q̂sq =
[ζ1 ζ ′

1 · · · ζNe+1 ζ ′
Ne+1]T, and q̂ = [̂qTos q̂Tsq ]T, with the cor-

responding definition for δq̂, Eq. (44) can be written as

δq̂T[M̂r ˙̂q + (K̂ r + iK̂ i )̂q] = 0 (45)

where the global matrices M̂r , K̂ r , and K̂ i , are formed using
the usual assembly procedures of the finite element method
and can be partitioned as

M̂r =
[
M̂os,r 0
0 M̂sq,r

]
, K̂ r =

[
K̂ os,r 0
0 K̂ sq,r

]
,

K̂ i =
[
K̂ os,i 0
K̂ c,i K̂ sq,i

]
(46)

Since the left-hand side of Eq. (45) must vanish for all vari-
ations δq̂, we arrive at

M̂r ˙̂q + (K̂ r + iK̂ i )̂q = 0 (47)

and wemomentarily ignore the rows corresponding to δq j =
0.

The boundary conditions are now applied by setting
v′
1 = ζ1 = ζNe+1 = 0 and taking the terms involving

v1 to the right-hand side of the equation to form the con-
trol input. We also set v′

Ne+1 = −kvNe+1. Defining qos =
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[v2 v′
2 · · · vNe v′

Ne
vNe+1]T, qsq = [ζ ′

1 ζ2 ζ ′
2 · · · ζNe ζ ′

Ne

ζ ′
Ne+1]T, q = [qTos qTsq ]T and removing the appropriate rows
and columns from the above equation yields

Mr q̇ + (K r + iK i )q = (B1r + iB1i )v1 + B2r v̇1 (48)

where Mr , K r , and K i are the reduced matrices which
can be partitioned analogous to those in Eq. (46). Addi-
tional terms are added to the last row and last column of
each Orr–Sommerfeldmatrix on the left-hand side to enforce
v′
Ne+1 = −kvNe+1. It is straightforward to form B1r from

the entries of K̂ os,r , B1i from the entries of K̂ os,i and K̂ c,i ,
and B2r from the entries of M̂os,r .

Defining qos = [v2 v′
2 · · · vNe v′

Ne
vNe+1]T, qsq =

[ζ ′
1 ζ2 ζ ′

2 · · · ζNe ζ ′
Ne

ζ ′
Ne+1]T, q = [qTos qTsq ]T, we can define

the (real) state vector to be x̂ = [qTos,r qTos,i q
T
sq,r qTsq,i ]T,

where qos,r = 
e {qos}, qos,i = �m{qos}, qsq,r =

e {qsq}, qsq,i = �m{qsq}. Defining the control input to
be ν = [
e {v1} �m{v1}]T, the state-space model can be
written as

˙̂x = Ax̂ + B̂1ν + B̂2ν̇ (49)

m = Cx̂ + D̂ν (50)

If the (real) outputs are taken to be m(t) = msq(t) =
[
e {ζ̂y(a, t)} �m{ζ̂y(a, t)}]T then C contains all zeros with
the exception of two entries equal to unity and D̂ = 0.

The term containing ν̇ can be removed by defining a new
state vector x = x̂ − B̂2ν. The ensuing state description is

ẋ = Ax + Bν, B = B̂1 + AB̂2 (51)

m = Cx + Dν, D = D̂ + C B̂2. (52)

If x is partitioned as x = col{xos, xsq}, then the abovematri-
ces can be partitioned as

A =
[
Aos 0
Ac Asq

]
, B =

[
Bos

Bsq

]
,C = [Cos Csq ] (53)

Re {   [G(i   )]}  λ     ω

Im
 { 

  [
G

(i 
  )

]}
λ

ω

-2.0

-1.0

0.0

1.0

2.0

-2.0 -1.0 0.0 1.0 2.0

Fig. 4 Nyquist plot (m = msq , Re = 1000, α = 0, β = 0.65)

where Cos = 0 ifm = msq . Hence, there is the possibility
that both the Orr–Sommerfeld and Squire modes [2] are con-
trollable using ν. Also both sets of modes may be observable
using the output msq .

For the numerical approach, we will take Ne = 62 finite
elements and a computational boundary of b = 24. The value
of Ne has been selected to address two competing concerns.
The first of these is to limit the number of states n = 8Ne −
2 = 494 to be less than 500 which is an outer limit for
the desired size of the dynamic controllers which have the
same number of states as the plant used for their design.
The other objective was to limit the differences between the
primary eigenvalues of A and the Orr–Sommerfeld/Squire
eigenvalues tabulated in [2] (for Re = 800, α = 0.125, and
β = 0.3) to be less than 1%. This eigenvalue comparison
also informed the choice of b (there is more discussion about
this in [10]). The eigenvalue comparison for Ne = 62 and
b = 24 is given in Table 1.

For the duration of this study, we will concentrate on the
case where Re = 1000, α = 0, and β = 0.65. It was shown
in [4] that these wavenumbers correspond to worst case tran-
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Table 1 Orr–Sommerfeld
/Squire eigenvalues for Blasius
case, Re = 800, α = 0.125,
β = 0.3

Schmid & Henningson [2] Damaren (Ne = 62, b = 24) Error (%)


e {λ/α} �m{λ/α} 
e {λ/α} �m{λ/α}
Orr–Sommerfeld

−0.01526 0.4299 −0.01614 0.4301 0.21

−0.3153 0.6711 −0.3119 0.6711 0.46

−0.3663 0.4373 −0.3649 0.4374 0.25

−0.4671 0.8608 −0.4605 0.8578 0.74

Squire

−0.1733 0.3011 −0.1733 0.3009 0.058

−0.2950 0.5308 −0.2943 0.5302 0.15

−0.3810 0.7281 −0.3795 0.7267 0.25

−0.4396 0.9163 −0.4375 0.9141 0.30

sient growth at this Reynolds number. The corresponding
multivariable Nyquist plot (i.e., the eigenloci of G(iω)) is
given in Fig. 4 for m = msq . The eigenvalues λ j have been
scaled to (4/π) tan−1(|λ j |)[exp(i arg(λ j )] which preserves
the phase, maps zero to zero, maps the unit circle onto the
unit circle, andmaps∞ onto a circle with radius two. Clearly
this system is not positive real, but the system possesses an
infinite gain margin.

4.2 Measuring transient growth

The worst case transient growth can be calculated as in Sect.
2.3 by taking the matrix in the energy quadratic form to be

Q = block diag{Mos, Mos, Msq , Msq}. (54)

Considering a Reynolds number of Re = 1000, according to
[4] the maximum value of J with respect to α and β occurs
at α = 0 and β = 0.65. It was given by 1514 and the cor-
responding time is Tmax = 778. In our case, if Ne = 62
and b = 24 (values to be used exclusively in the sequel), the
corresponding values are 1526 and 787.

4.3 Baseline case: the linear quadratic regulator
(LQR)

It has been noted that the LQR case leads to state feedback
which is expected to yield optimal reduction of the maxi-
mum transient growth if the weighting matrix in the LQR
functional is taken to be that given in Eq. (54). The penalty
on the control effort is taken to be R = R I with R > 0. The
values of J and the corresponding values of Tmax are given
in Table 2 for various values of R. This represents an ideal
case since clearly all of the states cannot be measured. It is
interesting to note that as R is reduced the transient growth
asymptotes to a lower value of 221 which should be com-
pared with the open-loop value of 1526. In Table 2, we have

Table 2 Optimal transient
energy growth for the linear
quadratic regulator

R J Tmax σ̄ [S(0)]
∞ 1526 787 1

104 528 523 0.47

103 236 443 0.17

102 227 369 0.054

101 223 367 0.017

1 222 369 0.0054

0.1 221 370 0.0017

0.01 221 370 0.00054

Table 3 Optimal transient
energy growth for static output
feedback

ζ̂y output
K (s) J Tmax

0 1526 787

0.001 1523 786

0.01 1318 690

0.1 814 597

1.0 800 599

10.0 800 599

100.0 800 599

also tabulated σ̄ [S(0)] which will be used as a performance
measure throughout this section.

4.4 Constant output feedback

Given the infinite gain margin for the outputs under consid-
eration, msq , it is of interest to examine the transient growth
using simple static output feedback, i.e., K (s) = K̄ I . The
corresponding values of J and Tmax are given in Table 3 for
various values of K̄ . When the wall-normal derivative of the
wall-normal vorticity is used as the output (msq), there is
reduction of J as K increases with an asymptotic least value
of 800.
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Table 4 Optimal transient
energy growth for the LQG/LTR
controller (R = 0.01)

q0 J Tmax σ̄ [S(0)]
0.01 1262 650 0.56

0.1 824 598 0.022

1 801 599 0.0011

10 801 599 0.00057

100 801 599 0.00054

σ [S(i   )]ω

ω 

q0 = 0.01

q0 = 0.1

q0 = 1

q0 = 10
LQR

10-4

10-3

10-2

10-1

100

101

10-5 10-3 10-1 101 103

Fig. 5 Singular values of the sensitivity function vs. frequency
(LQG/LTR controller)

4.5 Loop transfer recovery

Given the reduction in transient energygrowthobtainedusing
the LQR feedback, we endeavor to recover that performance
using the LQG/LTR solution presented in Sect. 2.5. For the
design case, the LQR weights are taken to be R = 0.01 and
Q is selected according toEq. (54). The singular values of the
sensitivity function S(iω) are depicted in Fig. 5 for various
values of q0 and the LQR case. It is clear that as q0 → ∞,
the LQR sensitivity function is recovered as expected. An
interesting question that arises is how much of the transient
energy growth reduction created by the LQR controller can
be recovered? The value of J is given in Table 4 for vari-
ous values of q0. Clearly convergence is achieved as q0 is
increased but the converged value is somewhat higher than
the LQR value. Note that J is computed using the composite
system matrix, Ā in the closed-loop system of Eq. (7) and
the initial values of the controller states are taken to be zero
when calculating the supremum with respect to the initial
states. It is interesting that the converged value of J (801)
is very nearly the same as that obtained using static output
feedback in Table 3.

Table 5 Optimal transient energy growth for the H∞ loopshaping con-
troller (γ = 2)

W J Tmax σ̄ [S(0)] bG,K

1 811 600 0.013 0.568

10 801 599 0.0013 0.151

25 800 599 0.00053 0.0604

100 800 599 0.00013 0.015

4.6 H∞ loop shaping

We initially consider the controller yielding optimal robust-
ness as given in Sect. 2.6 (Eqs. (14)-(15)) and corresponding
to an unshaped plant, i.e., W(s) = I . The minimum value
of ||[G(s), K (s)]||∞ is γmin = 1.347 which yields an opti-
mal robustness level of bopt = γ −1

min = 0.742. The closer
the chosen value of γ used in Eqs. (14)-(15) is to γmin, the
closer the closed-loop system will be to optimal robustness.
By increasing the distance between the chosen value of γ and
γmin, one can increase performance at the expense of robust-
ness. A value of γ = 2 was selected which yielded a value
of ||[G(s), K (s)]||∞ = 1.761, hence bG,K = 0.568, and a
DC sensitivity of 0.013 occurs (see Table 5). The transient
energy growth is J = 811.

As the loop-shaping weight W is increased there is an
increase in performance asmeasured by the sensitivity reduc-
tion and the transient growth asymptotes to a minimum value
of 800. This is virtually the same at that obtained using static
output feedback and anLQG/LTRcontroller. Thebest obtain-
able transient growth appears to be a property of the chosen
output and is independent of the controllers used. The behav-
ior of the sensitivity function is given in Fig. 6 and it is clear
that increasing W leads to increasing sensitivity reduction.

4.7 Model order reduction and reduced order
controller

In this section, the plant design model is reduced using
the procedures of Sect. 2.9. First, a modal representation
is reduced to the 100 most controllable/observable modes.
Then, a reduced order model of order Nc is obtained using
balanced truncation. The H∞ loop-shaping design procedure
is employed with W = 25 and γ = 2. The Hankel singular
values are given in Table 6 and it is clear that they roll off
fairly quickly. The sensitivity reduction at ω = 0 and the
transient growth measure J are given in Table 7 as a func-
tion of Nc. It is very interesting to note that the closed-loop
behavior is relatively insensitive to Nc and a good design is
obtained for Nc = 2. The sensitivity function is compared to
the full-order design in Fig. 11; they are nearly identical. For
this value, the quantity bGr ,Kr (the norm of the system in Eq.
(6) using the reduced order plant and controller) is 0.0608.
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Fig. 6 Singular values of the sensitivity function vs. frequency (H∞
loop-shaping controller)

Table 6 Hankel singular values j σ j

1 2.52

2 2.52

3 0.314

4 0.314

5 0.0256

6 0.0256

7 0.00188

8 0.00188

9 9.54 × 10−5

10 9.54 × 10−5

Table 7 Optimal transient energy growth for the reduced order H∞
loopshaping controller (W = 25, γ = 2)

Nc 	Nc J Tmax σ̄ [S(0)] bGr Kr δg

2 0.6834 800 599 0.00054 0.0608 0.0518

4 0.0551 800 599 0.00054 0.0610 0.0040

6 0.0040 800 599 0.00054 0.0610 0.0037

8 0.0002 800 599 0.00054 0.0610 0.0034

The gap metric between the reduced order plant Gr (s) and
the full-order model is 0.0518 < 0.0608. Hence, the reduced
order design is guaranteed to stabilize the full-order plant
which is already clear from the closed-loop eigenvalues and
the behavior of the sensitivity function.

σ [S(i   )]ω

ω 

N   = 2c
N   = 464c

10-4

10-3

10-2

10-1

100

101

10-5 10-3 10-1 101 103

Fig. 7 Singular values of the sensitivity function vs. frequency (reduced
order H∞ loop-shaping controller)

5 Conclusions

In this paper, themethods of linear multivariable output feed-
back control have been applied to the problem of suppressing
the transient energy growth in a Blasius boundary layer.
The linearized dynamics governing perturbations of the base
flow have been taken to be the usual Orr–Sommerfeld/Squire
equations after spatial Fourier transforms have been used
to reduce the dynamics to those governing the wall-normal
velocity and the wall-normal vorticity. The control input has
been taken to be the wall-normal velocity on the plate bound-
ary. The measurements have been taken to be the first spatial
derivative (wall-normal direction) of the wall-normal vortic-
itymeasured at thewall which is obtainable from shear-stress
measurements on the wall. It was shown that this output
is useful when combined with a wide variety of multivari-
able output feedback strategies. Nearly all cases led to the
same value of the maximum transient energy growth. An
interesting result was that the loop transfer recovery (LTR)
approach allowed the sensitivity function of an LQR design
to be recovered but the maximum transient energy growth
(approximately 800 for LTR) could not approach the LQR
value of 221.

The LQR value is independent of the sensing choice (it is
state feedback) but the value for the transient growth (221)
is still somewhat large. This is a strong function of the input
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actuation method adopted (wall normal velocity) which sug-
gests that other actuation mechanisms be studied with a view
to reducing it. The limiting value of the transient growth
(approximately 800) for the various control methods and the
chosen sensor output suggests that other sensingmechanisms
be studied as well.

In the Introduction, the present workwasmotivated by the
suggestion that large transient growth of flow perturbations
could induce laminar to turbulent transition by (nonlinear)
mechanisms that bypassed the usual ones predicted by linear
stability theory (the so-called Tollmien–Schlichting waves).
The significance of our work lies in showing that the adopted
actuation and sensing paradigms coupled with linear robust
control theory could reduce worst case transient energy
growth by close to 50% (1525 to 800). It is suggested that this
reduction could lead to postponement of boundary layer tran-
sition to larger Reynolds numbers (hence, larger distances
along the plate).
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