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1. INTRODUCTION

There is a trend towards building smaller, lower cost
spacecraft, which use cheaper, lower quality hardware. At

the same time, the required spacecraft performance is
increasing (consider the space telescope, which is required to
accurately track a star). The decrease in performance due to the
use of cheaper hardware may be offset via the use of more
sophisticated controller and estimation schemes.

Traditionally, the Extended Kalman Filter (EKF) has been
used for spacecraft attitude determination. This has the
advantage that it is computationally inexpensive, and fairly
robust with respect to model errors. However, it has the
disadvantage that it is a linearized technique, and this suggests
that the region of stability is small, since non-linearities in the
plant dynamics are not fully accounted for.

A recent addition to the family of non-linear filters is the
Nonlinear Predictive Filter (NPF). The NPF was derived by
Crassidis and Markley (1997a). This filter has the advantage
that no assumption is made about the magnitude or form of the
model error. In fact, the model error is “found” as part of the
filtering procedure. The NPF is also computationally
inexpensive to implement.

This paper presents the numerical application of both the
EKF and the NPF to the spacecraft attitude determination
problem. Crassidis and Markley (1997b) have also applied the
NPF to the spacecraft attitude determination problem.
However, they do not compare it with the EKF, and the
spacecraft dynamics are formulated differently. Crassidis and
Markley use the angular momentum and quaternions as the
states, this paper uses the angular velocity and Euler angles. In
practice, quaternions are preferred from the singularity
avoidance point of view, but for simplicity we use Euler angles
since the trajectory in question avoids the singularity anyway.

In this paper, two scenarios are considered. In the first,
angular rate measurements, magnetometer measurements, and
Sun-sensor measurements are all available. In the second, all
but the rate sensors are available. The filter performance
measure is the root mean square of the rate and orientation
errors, and the filter performances are compared with respect to
plant error, measurement error, initial estimate error, and sensor
noise level.
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ABSTRACT
Demands in the design and manufacture of spacecraft

are changing. Smaller, lower cost spacecraft are becoming
increasingly more desirable, while the required spacecraft
performance is increasing (consider the space telescope,
which is required to accurately track a star). Use of cheaper
hardware would lower the spacecraft performance, but this
effect may be offset by the use of more sophisticated
controller and estimation schemes. This paper compares
the Extended Kalman Filter (which has traditionally been
used for spacecraft attitude determination) with a relatively
new filter, the Nonlinear Predictive Filter. It is shown that
under certain circumstances the Nonlinear Predictive Filter
outperforms the Extended Kalman Filter, but that the
requirements for these circumstances (namely, the use of
rate sensors) conflict with the robustness requirement with
respect to initial estimate error.

continued on page 14
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2. FILTER ALGORITHMS

2.1 The Extended Kalman Filter
Since the EKF is well-known, and has been in use for a long

time, the algorithm is not summarized here. A full derivation of
the EKF is given by Jazwinski (1970).

2.2 The Nonlinear Predictive Filter
The full derivation of the NPF is presented by Crassidis and

Markley (1997a). The algorithm for its implementation is given
here.

In the NPF, the state estimates are obtained by propagating
an equation of the plant dynamics, which are assumed to be of
the form

�� ( �) ( �) ( ),x f x G x d= + tk tk ≤ t ≤ tk+1 (1)

where d(tk) is a to be determined model error vector. The output
estimate is given by

� ( �)y h x= (2)

State observable discrete measurements are assumed to be of
the following form:

yk = h(xk) + vk (3)

where vk is a zero-mean, Gaussian white-noise process with

E{vk} = 0

E R{ Tv vk l kl} = δ

where E{⋅} denotes the expectation operator.
Expanding the output estimate Equation (2) in a Taylor

series from one sampling instant to the next gives

�( ) �( ) ( �( ), ) ( ) ( �( )) ( )y y z x S x dt t t t t t tk k k k k+ = + +1 ∆ ∆� (4)

where ∆ t is the sampling period and
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and pi is the lowest order of the derivatives of h ti k( �( ))x in which
any component of d(tk) appears.

Lk
f (hi) is a kth-order Lie derivative and is given by

L h hi if
0( ) =

L h
L h

t kk
i

k
i

kf
f

1

T
1( )

( )

�
( �, ),=

∂
∂

≥
−

x
f x

The Lie derivative with respect to Lgi is given by

L L h
L h

ti
p

i

p
i

k
i

i

g f
f

T
[ ( )]

( )

�
( �, )−

−

=
∂
∂

1
1

x
G x

The model error vector d(tk) is found at each sampling instant to
minimize the cost functional

J t t t t tk k k k k( ( )) [ ( ) �( )] [ ( ) �( )d y y R y y= − −+ + + +
1
2

1 1 1 1
T –1 ]

+ 1
2

d Wd( ) ( )t tk k
T (8)

where W� Rq×q is a positive semi-definite weighting matrix.
Substituting Equation (4) into Equation (8) and minimizing

gives the model error d(tk)

d S x R S x( ) { ( �( )) ( ) ( ) ( �( ))t t t t tk k k= − −T T 1� �∆ ∆
+ − −W S x R} ( �( )) ( )1 T T 1t tk � ∆
× − ++[ ( �( ), ) ( ) �( )]z x y yt t t tk k k∆ 1 (9)

The NPF algorithm can then be found using the following
steps.

1. Calculate �(∆t) from Equation (6).
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RÉSUMÉ
Les exigences en matière de conception et de

fabrication des engins spatiaux sont en pleine
effervescence. Il est de plus en plus préférable de
construire des petits engins spatiaux peu coûteux et très
performants (pensez seulement au télescope spatial qui
doit poursuivre les étoiles avec précision). L’utilisation de
matériaux moins coûteux réduirait le rendement de l’engin
spatial, mais cet effet peut être contré en ayant recours à de
meilleures techniques de commande de l’appareil et
d’évaluation des coûts du projet. Ce mémoire compare le
filtre de Kalman étendu (qui était traditionnellement
utilisé pour déterminer l’attitude d’un engin spatial) à un
filtre relativement nouveau, le filtre prédictif non linéaire.
Il est démontré que dans certaines conditions, le filtre
prédictif non linéaire est plus performant que le filtre de
Kalman étendu. Certaines de ces conditions (notamment
l’utilisation de détecteurs de vitesse) sont incompatibles
avec les exigences portant sur la robustesse de l’appareil
par rapport à l’estimation initiale des probabilités d’erreur.

I:\casj\4801\Q02-015.vp
Wednesday, June 19, 2002 1:20:28 PM

Color profile: Disabled
Composite  Default screen



2. Store �x(tk), �y(tk), and y(tk+1).

3. Calculate z( �x(tk), tk) and S( �x(tk)) from Equations (5) and
(7), respectively.

4. Calculate d(tk) from Equation (9).

5. Integrate Equation (1) from tk to tk+1 to get �x(tk+1) and
�y(tk+1).

6. Set k to k + 1.

7. Return to 2.

3. SPACECRAFT ATTITUDE DYNAMICS

The spacecraft is assumed to be in a Keplerian orbit. The
spacecraft motion equation is given by

I �� + �×I� = Gg + Gm + Ga + Gs (10)

where I is the spacecraft inertia matrix and ω is the absolute
angular velocity of the spacecraft.

Gg, Gm, Ga, and Gs are the gravity-gradient, geomagnetic,
aerodynamic, and solar pressure torques, respectively. They are
given by

Gg =
3

5 b b
µ

r
R IR× (11)

Gm = m Bb b
× (12)

Ga = c Fpa a
× (13)

Gs = c Fps s
× (14)

where Rb, mb, and Bb are the spacecraft position, spacecraft
residual magnetic dipole moment, and Earth’s magnetic field,
respectively, expressed in the spacecraft frame of reference.
The vectors cpa and cps are the spacecraft centers of pressure
corresponding to the aerodynamic pressure and the solar
pressure, respectively. The vectors Fa and Fs are the net
aerodynamic and solar pressure forces on the spacecraft,
respectively, µ is the geocentric gravitational constant and r =
�Rb�.

The geomagnetic field model is the dipole approximation
given by Wertz (1985). In inertial coordinates, the geomagnetic
field is given by
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where α and δ are the spacecraft right ascension and
declination, respectively. The geomagnetic field components in
spherical coordinates are given by
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where θm and φm are the co-elevation and east-longitude of the
spacecraft, ae is the radius of the Earth, and g1

0, g1
1, and h1

1 are
geomagnetic field coefficients.

The spacecraft attitude is parameterized by a 3–2–1 Euler
sequence,θ= [θ1 θ2 θ3]T. The corresponding attitude kinematics
are given by

�� = S–1(�)� (15)
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Defining the state vector to consist of the angular velocity and
attitude parameterization, xT�[�T �T], the attitude dynamics
are given in first-order form by

�x = f(x, t) (16)

where
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The filters are given no knowledge of the geomagnetic-,
aerodynamic-, and solar-pressure torques; hence these are
treated as disturbance torques. Thus, the nominal plant used for
filter design is given by

�x = �f (x, t) (17)

with
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Note that the spacecraft is controls free. The justification for
this is that the controls are additive to the dynamics equations,
and their inclusion in the filter designs would also be additive.
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Since in both the plant and filter equations they depend on the
state estimates, they cancel out in the error dynamics.

4. MEASUREMENT EQUATIONS

In the first scenario, measurements of the angular rate,
Earth’s magnetic field, and the Sun position vector are
available. The measurement equation for this case is given by
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(18)

where CbI is the rotation matrix from inertial to spacecraft
coordinates corresponding to �. The vectors BI and sI are the
Earth’s magnetic field and Sun-pointing vector given in inertial
coordinates. The vectors vωk, vmk and vsk are additive noises
with discrete-time covariances

E rk l kl{ }v vω ω ω δT = 1

E rk l kl{ }v vm m
T

m= 1δ

E rk l kl{ }v vs s
T

s= 1δ

The Sun measurements are not available during the time when
the spacecraft is in eclipse, and are removed at that time.

In the second scenario, the rate measurements are removed,
and it is assumed that the Sun measurements are available at all
times (i.e., no eclipse). The measurement equation in this case
is given by
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5. PREDICTIVE FILTER COMPONENTS

The equation for the attitude kinematics, Equation (15), is
exact, and hence the model error need only be added to the
spacecraft dynamics equation (d(tk)� R3). In the first scenario it
is added as a disturbance torque, and in this case the filter
equation becomes

�� �( �, ) ( )x f x Gd= +t tk (20)

where
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In the second scenario (no rate sensor), the model error is added
directly to the filter dynamics, and hence in this case
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
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5.1 Angular Rate Measurements
The angular rate measurement depends directly on ω, and

hence, the order of pi in this case is 1. Hence,

zω = (∆t L h) ( )f
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5.2 Magnetometer and Sun-Sensor Measurements
The magnetometer and Sun-sensor measurements do not

depend explicitly on ω, and hence, the lowest order of
derivative of those in which any component of d(tk) appears is
pi = 2. Thus,
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5.3 Lie Derivatives
The first-order Lie derivatives are given by
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The second-order Lie derivatives are given by
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The Lie derivatives with respect to Lgi in scenario 1 are given by
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6. SIMULATION DESCRIPTIONS

6.1 Orbital Dynamics
The spacecraft orbit is assumed to be Keplerian, and the

same for all simulations. The orbital elements are given in
Table 1.

6.2 Magnetic-Field Model
The radius of the Earth is taken to be ae = 6371.2 km. The

geomagnetic field constants are: g1
0 = –29 682 nT, g1

1 = –1789
nT, and h1

1 = 5310 nT.

6.3 Spacecraft Characteristics
The spacecraft inertia matrix is given by I =

diag{[10 12 2]} kg m2, and the spacecraft residual magnetic
dipole moment is mb = [0.1 0.1 0.1]T A m2.

6.4 Numerical Integration and Sampling Rate
The simulation is Fortran based and the spacecraft states are

propagated using a fourth-order Runge–Kutta procedure with
the stepsize being the sampling period, Ts = 0.1 s.

6.5 Spacecraft Initial Conditions
The spacecraft initial conditions are

x(0) = [0.005 rad/s 0.005 rad/s 0.005 rad/s 10° 10°10°]T

6.6 Sensor Noise and Sensor Suites
The sensor noise components are generated using the

equation

v ri i i= −





12 σ 1
2

(23)

whereσ i is a random variable between 0 and 1 generated using
the Fortran intrinsic function Rand. The values of the sensor noise
covariances are given in Table 2.

6.7 Performance Measures
The filter performance is measured by calculating the root

mean square (rms) of the angular rate and Euler angle errors.
These are given by
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where eωk =ω(tk) – �ω(tk) and eθk =θ(tk) – �θ(tk) are the estimation
errors in the angular rates and Euler angles, respectively, and n
is the total number of estimate updates during the simulation.

6.8 Plant Error
Model error in the plant is introduced by errors in the

spacecraft inertia matrix. The true spacecraft inertia matrix
remains fixed throughout all simulations, but the filter
knowledge of it changes from simulation to simulation. The
error in the inertia matrix is introduced in two ways
simultaneously. There is an error in the value of the principal
inertias, and there is an offset of the principal axes. The filter
principal inertias are calculated from

{Ipe}i,i = {Ipt}i,i[1 + 0.02ep], i = 1, 2, 3
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a (km) e i (deg) Ω (deg) ω (deg) t0 (s)

7171.2 0 94.6 157.5 180 0

Table 1. Orbital elements.

r Tω ( ) rm (deg/s) rs (deg)

0.00016 2 × 10–9 0.0014

Table 2. Sensor noise covariance.
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where {Ipt}i,i and {Ipe}i,i are the true and filter principal inertias,
respectively. The angular offset of the principal axes is given by
a 3–2–1 Euler sequence

�I = ep[3° 3° 3°]T

From this the filter inertia matrix is calculated

Ie = C T(�I)IpeC(�I)

where C(�) is the rotation matrix corresponding to �I. It is clear
then that ep is a measure of the plant error.

6.9 Measurement Error
Model error in the measurements is introduced in two ways

simultaneously. The filter knowledge of the geomagnetic field
is not exact, and the sensors are offset. The geomagnetic field
(as far as the filter is aware) is calculated using the
geomagnetic-field constants given by

g1e
0 = g1

0(1 + 0.01em)

g1e
1 = g1

1(1 + 0.01em)

h1e
1 = h1

1(1 + 0.01em)

The Earth’s radius (as far as the filter is aware) is calculated
from

aee = ae(1 + 0.01em)

The angular offsets of the sensors are given by 3–2–1 Euler
sequences

�ω = em[1° –1° 1°]T

�m = em[–1° 1° 1°]T

�s = em[1° 1° –1°]T

for the rate-sensor, magnetometer, and Sun-sensor,
respectively. Thus, the actual measurements are given by
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where C(�i) is the rotation matrix corresponding to �i. Thus, em
is a measure of the measurement error.

6.10 Initial Estimate Error
The initial condition of the state estimates is given by

�x(0) = x(0) + ei e

where for scenario 1

e = [0.005 rad/s 0.005 rad/s 0.005 rad/s 1° 1° 1°]T

and for scenario 2

e = [0.005 rad/s 0.005 rad/s 0.005 rad/s 5° 5° 5°]T

Hence, ei is a measure of the initial estimate error.

6.11 Filter Tuning
For the EKF, the discrete-time plant noise covariance

matrix, Q is assumed to be of the form

Q =










q1 0

0 0

For the NPF, the model error weighting matrix, W, is assumed
to be of the form

W = w1

In tuning the filters, ep, em, and ei were set to zero (the filter is
designed for the nominal plant), and q and w were sought to
minimize Ermsω and Ermsθ. The minimum for both did not
always occur for the same value of q or w, and a compromise
was achieved instead.

In scenario 1, the values chosen are, q = 5 × 10–12 s–4 and w =
1 × 104 kg2 m4 s–4. In scenario 2 they are q = 5 × 10–12 s–4 and
w = 5 × 106 s–4.

6.12 Simulations Performed
With the filters tuned for the nominal plant, the filters were

perturbed to examine performance with respect to plant error,
measurement error, and sensitivity to initial estimate error. The
simulation sets are summarized in Table 3. Simulation set 1
examines the filter sensitivity to plant error, simulation set 2
examines the filter sensitivity to measurement error, and
simulation set 3 examines the filter sensitivity to initial estimate
error. All simulation sets were run for both sensor suite
scenarios. Simulations were also performed for the nominal
plant (ep = em = ei = 0) where the sensor noise levels in Table 2
were multiplied by 10 and 100. The filters were redesigned for
the new sensor noise levels (although this was only necessary
for the NPF in scenario 2).
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Simulation set ep range em range ei range

1 –6, 6 0 0
2 0 –6, 6 0
3 0 0 –6, 6

Table 3. Simulation sets.
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7. SIMULATION RESULTS

7.1 Plant Error
As shown in Figures 1 and 2, the NPF with rate

measurements has no sensitivity to plant error. The EKF
performance on the other hand, becomes progressively worse
as the plant error increases. The EKF Euler angle estimates are
affected more by the plant error than the angular rate estimates.
This is not surprising given that the angular rates are measured
directly whereas the Euler angles are not.

The situation is reversed for the EKF when the rate
measurements are removed (see Figures 3 and 4). The angular
rate estimates are much more sensitive to plant error, and the
Euler angle estimates are less sensitive. As in the case with rate
sensors, the NPF angular rate estimates are completely
insensitive to plant error, however, the removal of the rate

sensor results in the NPF Euler angle estimates getting worse as
the plant error is increased.

Figures 1 and 2 suggest that for large plant errors, the NPF
will out-perform the EKF when rate measurements are
available. This conclusion cannot be drawn for the case when
rate measurements are not available. Figure 4 shows that the
Euler angle estimates become worse at a quicker rate for the
NPF than the EKF when the plant error is increased.

The conclusion that can be drawn from these results is that
for the most robust estimates with respect to plant error, the
NPF should be used with rate sensors present.

7.2 Measurement Error
Figure 5 shows that both the EKF and the NPF angular rate

estimates have essentially the same sensitivity to measurement
error when rate measurements are available. The EKF fares
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Figure 1. Angular rate performance with respect to ep (scenario 1).

Figure 2. Euler angle performance with respect to ep (scenario 1).

Figure 3. Angular rate performance with respect to ep (scenario 2).

Figure 4. Euler angle performance with respect to ep (scenario 2).
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slightly better, but the difference is not significant. Figure 6 on
the other hand, shows that when rate measurements are
available, the NPF performs significantly better than the EKF
for Euler angle estimates. The reverse is true when rate
measurements are not available. The NPF and EKF
performances are almost identical for the Euler angle estimates,
but the EKF significantly outperforms the NPF for the angular
rate estimates (see Figures 7 and 8).

It is also noteworthy from comparing Figures 5 and 7, that
the angular rate estimates are significantly worse when the rate
measurements are not available. The Euler angle estimates are
also worse when the rate measurements are not available.

Comparing Figures 5, 6, 7, and 8, it can be concluded that
the most robust filter with respect to measurement error is the
NPF when the rate measurements are available. The least

robust filter with respect to measurement error is the NPF
without rate measurements.

7.3 Initial Estimate Error
Figure 9 shows that with rate sensors, the EKF and NPF

perform essentially the same for the angular rate estimates with
respect to initial condition error. This is not too surprising,
since with the rates being measured directly, their estimates can
be expected to converge rapidly. Figure 10, however, tells a
completely different story for the Euler angle estimates.

The NPF Euler angle rms estimation error increases rapidly
as the initial estimate error increases. This shows that the
convergence of the NPF Euler angle estimates is very slow. The
EKF Euler angle estimates converge rapidly. In fact, it was
found that for initial estimate errors not much larger than those
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Figure 5. Angular rate performance with respect to em (scenario 1).

Figure 6. Euler angle performance with respect to em (scenario 1).

Figure 7. Angular rate performance with respect to em (scenario 2).

Figure 8. Euler angle performance with respect to em (scenario 2).
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plotted in Figure 10, the NPF did not converge at all in the
Euler angles, but did converge in the rates.

A possible explanation for this behaviour of the NPF with
rate measurments is that unlike the EKF, the Euler angle
estimates are not updated directly. They are updated indirectly
by integration of Equation (15). The angular rates are however
directly updated by the model error, d(tk). With rate sensors
present, the angular rates are included in the cost function of
Equation (8), and the filter attempts to track the angular rates at
the expense of the Euler angles. Since Euler angles are integrals
of the rates, the initial condition of the Euler angles greatly
affects the resulting Euler angle trajectory. If the NPF puts most
emphasis on tracking the angular rates, then it does not allow
the Euler angles to converge.

Another point of interest is that with rate measurements
available, the EKF was able to converge rapidly for very large
initial errors. Figure 12 seems to confirm the hypothesis
outlined above. With the rate sensors removed, the NPF Euler
angle estimate performance improved, and was able to be made
to converge for much larger initial estimate errors. The cost of
this is that the angular rates converge slower. However, this is of
little consequence, since if the Euler angles converge, then the
rates being derivatives of them must converge also. This does
not work in the reverse, it is spoilt by the constant of integration
(i.e., initial errors of the Euler angles). In all cases, the EKF
converges more quickly than the NPF, but it was found that
when the rate sensors were removed, the zone of convergence
was larger for the NPF. In summary, the inclusion of rate
measurements makes the EKF extremely robust with respect to
initial errors, whereas the NPF requires the exclusion of rate
measurements to perform acceptably with respect to initial
error. In all cases, the EKF exhibits much more rapid
convergence (when it does converge) than the NPF.

7.4 Sensitivity to Sensor Noise
Figures 13, 14, 15, and 16 show that the NPF is much more

sensitive to sensor noise than the EKF. This can be explained by
the fact that the statistics of the sensor noise used in this study
match the assumptions used in the design of the EKF whereas
the NPF makes no real statistical assumptions on the sensor
noise. When the plant is nominal, the EKF is capable of much
more accurate state estimates than the NPF.

8. CONCLUDING REMARKS

In this paper we have compared the application of the
Extended Kalman Filter and the Nonlinear Projection Filter to
the spacecraft attitude determination problem. We have shown
that under certain circumstances the Nonlinear Projection Filter
outperforms the Extended Kalman Filter, but this requires the
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Figure 9. Angular rate performance with respect to ei (scenario 1).

Figure 10. Euler angle performance with respect to ei (scenario 1).

Figure 11. Angular rate performance with respect to ei (scenario 2).
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use of rate sensors. This conflicts with the requirement that no
rate sensor be used for robustness with respect to initial
estimate error.

The results show that the filters are much more sensitive to
measurement errors than to plant errors. Hence, in designing a
filter for spacecraft attitude determination, much care must be
taken to mount the sensors accurately. An accurate model of the
spacecraft is less important.
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Figure 12. Euler angle performance with respect to ei (scenario 2).

Figure 13. Angular rate performance with respect to sensor noise level
(scenario 1).

Figure 14. Angular rate performance with respect to sensor noise level
(scenario 2).

Figure 15. Euler angle performance with respect to sensor noise level
(scenario 1).
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Figure 16. Euler angle performance with respect to sensor noise level
(scenario 2).
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