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Combined Method for the Modal System Identification
of the Balloon-Borne Imaging Testbed
Lun Li'; Christopher John Damaren, Ph.D., P.Eng.?; Luis Javier Romualdez?®;

Calvin Barth Netterfield, Ph.D.#; John Wesley Hartley®; Mathew Notman Galloway?®;
Richard James Massey, Ph.D.”; and Paul Clark, C.Eng.®

Abstract: This paper presents a novel method for the modal system identification of a large mechanical structure by combining results from
simulations and physical measurements. Specifically, reconstruction of mode shapes was accomplished by comparing simulated and mea-
sured amplitude ratios generated using a Nyquist analysis. The methodology developed in this paper improves upon traditional techniques by
allowing for statistically cross-referencing relatively few sensor measurements and a relatively simple simulation model. This methodology
was used to identify three major modal frequencies and mode shapes of the main aluminum honeycomb sandwich panel gondola structure of
the balloon-borne imaging testbed (BIT). BIT was a stratospheric ballooning project for astronomy that was launched on September 18, 2015,
from Timmins, Ontario, Canada. Ensuring that structural vibrations do not adversely affect the pointing accuracy of the on-board telescope
is crucial to the success of the project. This paper also highlights some of the advantages and drawbacks of the presented methodology
and suggests improvements for future applications in balloon-borne experiments. DOI: 10.1061/(ASCE)AS.1943-5525.0000647.
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Introduction

The motivation behind the development of a methodology for the
modal system identification for a large structure is the balloon-
borne imaging testbed (BIT). BIT was a stratospheric ballooning
project for astronomy that was successfully launched on September
18, 2015, from Timmins, Ontario to an altitude of 36 km over
the period of 1 night. BIT’s goal was to showcase an ultra-high-
accuracy pointing system that will represent a next-generation tele-
scope for balloon-borne astronomy in the visible and near-visible
(300-900 pm) spectra (CASCA 2011).

IEngineer Researcher, Dept. of Physics, Univ. of Toronto, 60 St. George
St., Toronto, Canada M5S 1A7; Graduate Student, Institute for Aerospace
Studies, Univ. of Toronto, 4925 Dufferin St., Toronto, Canada M3H 5T6
(corresponding author). E-mail: lun.li@mail.utoronto.ca

2Professor, Institute for Aerospace Studies, Univ. of Toronto, 4925
Dufferin St., Toronto, Canada M3H 5T6.

3Graduate Student, Institute for Aerospace Studies, Univ. of Toronto,
4925 Dufferin St., Toronto, Canada M3H 5T6.

“Professor, Dept. of Physics, Univ. of Toronto, 60 St. George St.,
Toronto, Canada M5S 1A7; Professor, Dept. of Astronomy and Astrophy-
sics, Univ. of Toronto, 50 St. George St., Toronto, Canada M5S 1A7.

SGraduate Student, Dept. of Physics, Univ. of Toronto, 60 St. George
St., Toronto, Canada M5S 1A7.

®Graduate Student, Dept. of Physics, Univ. of Toronto, 60 St. George
St., Toronto, Canada M5S 1A7.

"Royal Society University Research Fellow, Centre for Advanced
Instrumentation, Durham Univ., South Rd., Durham DHI1 3LE, U.K.

8Head of Engineering, Centre for Advanced Instrumentation, Durham
Univ., South Rd., Durham DHI 3LE, U.K.

Note. This manuscript was submitted on December 21, 2015; approved
on April 6, 2016; published online on June 22, 2016. Discussion period
open until November 22, 2016; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Aerospace En-
gineering, © ASCE, ISSN 0893-1321.

© ASCE

04016051-1

The design of the BIT gondola (Fig. 1) must allow the on-board
telescope to maintain image stabilization at 50 milliarcseconds,
with an integration time on the order of tens of minutes, during
which the structure is subjected to external and internal forces
(C. B. Netterfield, A Balloon-Borne Near-UV/Visible Light Tele-
scope and Test-Bed, unpublished proposal, 2011). Due to the high
level of pointing accuracy required, the normally imperceptible
oscillations created by stepper motors, ball bearings, and frame
resonances can prove detrimental to the resulting image quality
(Rhodes et al. 2012; Barthol et al. 2011).

The analyses introduced in this paper are integral in the design
of the on-board control system in order to achieve the desired point-
ing requirement. Although not a direct focus of this paper, a
potential application of its results is the incorporation of the iden-
tified mode shapes and frequencies in the augmentation of a control
system.

Scientific Motivations

The scientific importance of this paper is three old. Firstly, prior to
BIT, analyses dedicated to understanding specifically the modal
behaviors of the structure was seldom and minimally performed
for balloon-borne gondolas (Rhodes et al. 2012; Pascale et al.
2008; Soler et al. 2014; Barthol et al. 2011), if at all, and are often
considered ex post facto (e.g., Barthol et al. 2011; Pascale et al.
2008).

Secondly, the mathematical technique that the authors intro-
duced in this paper, the comparison of amplitude ratios, is not used
in past analyses of structural dynamics. This technique has the clear
advantage of not needing a piece of specialized equipment—an im-
pact hammer with a force transducer—which can not only be ex-
pensive but also introduce new sources of error to the system. Much
like how balloon-borne telescopes are a much cheaper alternative to
space telescopes with minimum sacrifices in atmospheric obscura-
tion, this method of modal system identification with amplitude
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Fig. 1. BIT gondola is approximately 3 m tall from the base to the pivot joint and weighs around 800 kg, and it is constructed primarily out of
aluminum honeycomb panels; this gondola was designed by the author between the summers of 2012 and 2013; its construction was achieved by
everyone at the University of Toronto High Bay who is on the BIT team between 2013 and 2015; the gondola is comprised of three independently
rotating gimbals, the largest and most ostensible of which, the outer frame, is the subject of the analyses performed in this paper

ratios is a much cheaper alternative to the classic technique of using
force transducers.

Thirdly, the Balloon-Borne Imaging Testbed was the proto-
type mission for a new class of ultra-high-precision balloon-
borne pointing systems. This means that balloons are now a
viable medium for future high-precision astronomical telescopes
and will become ubiquitous due to their advantages over terres-
trial telescopes. Therefore, this motivates a quick and reliable
method to perform system identification of the BIT gondola
and can be deemed as necessary for future balloon-borne
experiments.

Approach and Methodology

Simply stated, this study intends to determine the characteristic
frequencies and mode shapes of the BIT gondola within a range
of frequencies that are of concern. There are two general ways
which this problem can be solved: through finite-element analysis
(FEA) simulation and through direct measurements. Each approach
on its own has many methods and implementations all with varying
benefits and shortcomings.

FEA Simulation

This category of modal system identification techniques has
the obvious benefits of versatility: the retrieval of results does
not require the physical system, the mode shapes can be easily
represented visually, and the information regarding the entire
gondola can be retrieved to arbitrary precision. However, it is
often infeasible to completely rely on FEA for system identi-
fication due to several fundamental drawbacks inherent to sim-
ulation. Namely, all of the benefits stated in the preceding
sentence rely on an accurate FEA model of the physical sys-
tem, and this is often difficult to achieve due to computational
limitations; the greater the accuracy of the model, the greater
the computational time. A simplified model requires many as-
sumptions that, if chosen improperly, may misrepresent the
system.
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Physical Measurements

This category of modal system identification techniques has the
advantage of accuracy as the behavior of the system is being di-
rectly measured by sensors. However, these sensors are also highly
constraining because they are physical objects. If every sensor mea-
sures a single point on the gondola, information regarding mode
shapes is only known at those measured locations. It can get in-
creasingly difficult to add more sensors to represent the continuum
that is the physical gondola.

Combining Systems

Due to their advantages and limitations, the two systems are com-
bined in the system identification of the BIT gondola. Specifically,
the procedure can be stated as follows:
1. Create an FEA model of the BIT gondola;
2. Simulate the FEA model to retrieve characteristic frequencies
and mode shapes;
3. Determine locations of greatest amplitude for modes that fall
within the frequency range of interest;
4. Place sensors (accelerometers) onto the BIT gondola at the
locations of interest;
5. Collect impulse response data from the sensors (in the time
domain);
6. Process the data and create Fast Fourier Transform (FFT)
results;
7. Identify peaks to determine natural frequencies and amplitude
ratios;
Identify spread to determine the damping ratios;
9. Use FFT circle plots (Nyquist plots) to identify phases
between sensors;
10. Match measured mode shapes with the simulated mode
shapes; and
11. Interpret the results.

The corroboration between the simulation results and the physi-
cal measurements implies that the true (more accurate) frequencies
will be represented by the physically measured results and the true
(more complete) mode shape will be represented by the simulation
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result. This combination gives a better constrained system by uti-
lizing the more accurate frequency measurement from the acceler-
ometers while utilizing mode shape information from the FEA.
Each of the preceding steps is described in detail in the following
sections.

Mechanical Description

The mechanical component of BIT can be summarized as a mecha-
nism that accommodates the pointing degrees of freedom, main-
tains the pointing accuracy, and withstands the various forces
imposed on a balloon-borne telescope. Three gimbal frames are
used to allow telescope rotation in the three independent axes: the
inner frame, middle frame, and outer frame. In order to minimize
low-frequency vibrations of the structure, a material that has a great
strength to weight ratio, aluminum honeycomb sandwich panels,
was chosen as the main structural element for all three frames
(L. Li, A Design Study of The Balloon-Borne Imaging Testbed,
unpublished report, 2013).

Constructing the Simulation Model

For the simulation analysis of BIT, the simulation model was de-
rived from the full mechanical model of the gondola, which was
modeled in the computer-aided design software SolidWorks.
The simulation analysis was completed using its simulation pack-
age SolidWorks Simulation. Since a direct simulation of the entire
structure with all its intricacies would prove overly complicated, the
geometry of the structure must be greatly simplified in order to
practically perform the simulations. This was done by approximat-
ing the entire structure as a shell, which provides two main benefits:
(1) the complexity of the simulation is significantly reduced
(compared to a solid body simulation); and (2) unrealistic edge ef-
fects due to corner connections that are generally found in solid
body simulations are removed.

One important simplification made was that the modeling only
included the major structural component, the outer frame. This is
done because the outer frame is assumed to be sufficiently de-
coupled from the other frames due to the minimally constrained
contact points between them.

From the documentation on the frequency analysis in SolidWorks
Simulation, it is known that the solution of its frequency analysis is
determined by solving the eigenvalue problem

(K,, — M, )q, =0, =123, ...

where K, and M,, = respectively, the stiffness and mass
matrices of the system; w, = natural frequencies; and q, =
eigenvectors (mode shapes) (SolidWorks API). Therefore, it is crucial
to accurately input the stiffness and mass of the gondola model.

Creating the Correct Shell

The modeling of the aluminum honeycomb sandwich panels was
done manually by defining a shell that has an equivalent bending
stiffness EI as the panels supplied by the vendor Teklam, Corona,
California. Through-thickness and in-plane effects, such as core
shear, are not considered because they are considered to be small
compared to plate bending. It can be shown that the E7 of a sand-
wich panel is approximately the product of the area moment / and
the Young’s modulus E of the surface sheets (Hexcel 2000). Thus, a
shell thickness of 12.4 mm, which would represent the same / as
two 0.5 mm (0.02 in.) sheets kept at 24.9 mm (0.98 in.) apart, was
used for the shell definition.
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Table 1. Properties of the Custom Shell Material Defined in SolidWorks
Simulation

Property Value Unit Reference material
Elastic modulus in X 69,000 N - mm? AL3003-h18
Poisson’s ratio in XY 0.33 — AL3003-h18
Shear modulus in XY 25,000 N - mm? AL3003-h18
Mass density 523 kg - m? Computed
Tensile strength in X 200 N - mm? AL3003-h18
Yield strength in XY 185 N - mm? AL3003-h18
Shell thickness 12.4 mm Computed

Note: properties are taken/computed from the facesheet material
(AL3003-H18 aluminum alloy) of the Teklam AA207-33-1000 panels
(Teklam 2005).

In addition, the density of the material was recalculated so that a
12.4-mm-thick sheet would have the same mass per area as the
Teklam sheet. A custom material was defined in the frequency analy-
sis. The final property assignments are documented in Table 1.

Defining Distributed Masses

In order to create a high-accuracy mass matrix in the eigenequation,
distributed masses were assigned to the shell in addition to its own
mass (Fig. 2). Geometric regions where the batteries are located
were partitioned in the model to represent the batteries. A mass
of 18 kg (40 1b) was assigned to each of the areas, representing
the weight of the individual batteries. A separate rigid shell plate
was created for the reaction wheel, whose diameter is approxi-
mately the same as that of the real reaction wheel (100 cm), sitting
on a rigid cylinder, whose height is approximately the same as that
of the reaction wheel (20 cm). A separate partition ring was defined
on the plate at which a distributed mass of 45 kg (100 Ib) was as-
signed. Extra masses were added to all edge joints where they were
estimated using the weight of the joining aluminum sheets, fasten-
ers (bolts, nuts, and washers), and epoxy glue. Significant electron-
ics boxes were also added by defining new partitions.

The self-mass of the shell structure is assigned automatically
when the density of the material is defined as in Table 1. In certain
areas, an extra shell layer was added in the model to represent extra
reinforcement material. Specifically, this was done to the sheet that
joins the midplane ring to the lower half of the outer frame. This is a
rather convenient method of reinforcing material without redun-
dantly defining a new type of sheet. However, this was not done
to the bottommost sheet of the outer frame, where there are two
layers of the 25.4 mm (1 in.) aluminum honeycomb sheets. For this
bottom panel, a new equivalent shell was defined for a double-
layered honeycomb panel.

Simulation

Once a represented shell model is created, the next step is to sim-
ulate the system using SolidWorks Simulation. One of the most cru-
cial aspects of this simulation process is to properly define the
boundary conditions for the structure. SolidWorks Simulation al-
lows for the definition of a variety of simulation conditions such
as fixed, sliding, pinned, and free. Unfortunately, it does not pro-
vide a direct definition for a gondola hanging from a tether, which
is the real system. However, it is known that a tether does not fix the
motion of the gondola at any position. Therefore, the closest boun-
dary condition definition would be to define the structure as a free
body, without any constraints.
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(b) (©

Fig. 2. (a) Physical gondola of BIT used as the subject of this paper; (b) simulation shell created based on the gondola; specially assigned mass
distributions are highlighted and marked with a plus sign (+); (c) mesh used in the simulation

Identification of Sensor Placement Locations

Given the undamped linear system solved by SolidWorks Simula-
tion, the physical interpretation of a mode is when each point in the
structure vibrates at the same frequency and reaches maximum de-
flections simultaneously. Therefore, it would be advantageous to
place the sensors at the spatial antinodes (or locations of greatest
structural deflection) to maximize the signal to noise ratio for the
sensors (Bai et al. 2008).

Fig. 3 shows the simulated mode shapes of the first six elastic
modes of BIT’s outer frame. Based on the observed structural de-
formations, sensor locations are heuristically chosen in attempt to
maximize the measured amplitudes. The final choices are shown
in Fig. 4.

Sensor Selection, Installation, and Readout

The physical portion of the system identification process was ac-
complished using accelerometers, which are commonly used in
modal identification techniques (Bagersad et al. 2014; Avitabile
et al. 2006; Bai et al. 2008). There are several advantages to this
particular choice of sensors. Firstly, accelerometers are inexpensive
and can be easily acquired. The miniaturization of microelectrome-
chanical systems (MEMS) have made these inertial sensors the size
of a pinhead and they can be fastened anywhere in the form of a
breakout board. Secondly, the directions of the accelerometer mea-
surements are the same as those of the mode shapes. As the second
derivative of a sine function is another sine function, the acceler-
ation of the modal vibrations maintains the shape of the modal
vibration with a constant scaling. Thirdly, accelerometers can pre-
serve much more information at higher frequencies. In the Fourier
domain, the amplitude is proportional to frequency squared, so the
peaks in the higher frequencies would appear much more promi-
nently. Because of these reasons, a total of 21 analog accelerometer
channels were used in the physical data collection in the system
identification process.

The data were collected asynchronously at an average rate of
approximately 1,260 Hz, which is much greater than the control
limit of the gondola, specifically the telescope optics piezoelectric
actuator that operates at approximately 50 Hz. For each trial, sev-
eral tens of seconds of time-streams were collected in order to be
able to capture finer details in the frequency domain. However, all
trials were limited to be under 5 min as higher-frequency noise
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would dominate for longer trials with diminishing gain in the res-
olution of lower frequency responses. These time-stream data were
then processed using MATLAB.

Impulse Response

An easy (both mathematically and practically) and common way to
excite a system across all frequencies is by applying an impulsive
input (Bagersad et al. 2014; Eggers and Stubbs 1994; Ewins 1995).
Mathematically, a perfect impulse [a Dirac-delta function 6(f)]
corresponds to a constant value across all frequencies in the Fou-
rier domain (Ewins 1995). This simplicity will be shown to be
algebraically advantageous in the derivations. Practically, an im-
pulse can be approximated simply by an impact from a hammer.
To prevent damage to the gondola, a rubber mallet was chosen for
this task.

Ideally, the response from an impulse does not depend signifi-
cantly on where the impulse is applied. This greatly reduces
potential complexity of the experiment by reducing it from a
multiple-input multiple-output (MIMO) system to a single-input
multiple-output (SIMO) system (Bagersad et al. 2014). This fact
was corroborated by performing impulse response measurements
at multiple impact locations.

Structural Model

The mathematical description of the system begins with the partial
differential equation describing the deformation field w(r, ) of the
elastic structure, where w is a function of spatial location r and time
¢ under an impulsive excitation at location r, with a strength f in
the direction n,,

MN(x, t) + Dw(r,t) + Kw(r, 1) =n,6(r —r,)f6(r) (1)

where ., D, and K = mass, damping, and stiffness operators,
respectively (Maia and Silva 2001).

The undamped eigenvalue problem (as solved in SolidWorks
Simulation) is

_W%w/%llia-F/CdJa =0,aa=1,2,3,--- (2)

where 1), and w, = ath mode shape (eigenfunction) and un-
damped natural frequency (root of the eigenvalue), respectively.
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44

Mode 1 (36.27 Hz) Mode 2 (41.75 Hz)

]

Mode 3 (71.56 Hz) Mode 4 (80.94 Hz)
Mode 5 (91.85 Hz) Mode 6 (93.20 Hz)

Fig. 3. First six elastic body modes (following the six rigid body modes
of three rotations and three translations) as solved by SolidWorks
Simulation; the actual magnitudes of the displacement results are
unimportant as they are normalization dependent, while the relative
magnitudes (amplitude ratios) are not

As such, w can be written as a modal decomposition in the
form of

00

W 1) = 9 (r)4(1) (3)

a=1

where 7, = modal coefficients.
The eigenfunctions possess the following orthogonality
properties:

/ v = 6., (4)
1%

/ PEKY3dV = wib,g (5)
Vv

where 0,3 = Kronecker delta. In addition, if it is assumed that
damping in the system is relatively small and the modes are
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X

Fig. 4. Physical layout of the accelerometer placements; Sensors 1, 4,
and 5 are triaxial accelerometers and the rest are single-axis acceler-
ometers (where the deformations are transverse to the sheet surfaces);
dashed markers represent sensors not in view

orthogonal to the damping operator, the following approximation
can be made:

/ lﬁ(TIDl/Jng = 2(@"‘}06@3@ (6)
14

where (, = ath damping ratio (Maia and Silva 2001).

Using modal decomposition as well as the orthogonality condi-
tions described in Egs. (5) and (6), substituting Eq. (3) into Eq. (1)
allows it to be diagonalized and simplified to

(1) + 20aWala (1) + Wata (1) = Yo of (D). a =123, ... (7)

where 1, , = wk(r,)n, = constant representing the mode shape
evaluated at the impulse location in the direction of the impulse.
Taking the Laplace transform of Eq. (7) and solving for 7, gives

Yaaf

T 1 2 was 62 ®)

Na(s)

where s = Laplace transform variable and notation is abused by
letting 7,,(s) be the Laplace transform of 7,(z).

Sensor Model

Letting r; and n; be the location and the measurement direction of
an accelerometer, the output measurement, y can be expressed as

y(t) = ni¥(r,. 1) (9a)
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fj bt (9)

where 1, , = nTy,(r,) = constant representing the amplitude of
the mode shape evaluated at the accelerometer location in the di-
rection of the accelerometer axis. Taking the Laplace transform of
Eq. (90) and substituting Eq. (8) gives

Zws alla(s (10a)
=S e (109
:icaHa’(S) (10()

a=1

where C,, = 1 ,%,,f = constant value representing a relative
amplitude, and

52

H(s)=————
“ §2 4+ 20w, s + Wl

(11)

Eq. (10b) fully describes sensor measurements as a function of
modal parameters in the Laplace domain.

Peak Identification

Once the data from the accelerometer measurements from the
impulse response were acquired, all computations are carried out
using MATLAB. These steps include resampling the time series,
finding the time of impulse, converting time domain data to fre-
quency domain using the Fast Fourier Transform (FFT), and creat-
ing frequency and amplitude plots. Plotting the amplitude versus
frequency of the FFT results in a log-log plot and yields a fairly
recognizable shape for damped elastic structures, shown in Fig. 5.
The frequencies of the resonant modes can be easily identified by
measuring the frequencies corresponding to the peaks in this plot.

Circle Plots

Another method of plotting FFT data is by directly plotting the
complex values on a imaginary versus real plot (Ewins 1995; Maia
and Silva 2001). These circle plots (or Nyquist plots) contain a
great deal of unique information that cannot be represented by

amplitude plots. Starting with the description of the sensor model
in the Laplace domain, Eq. (10b) can be converted using Eq. (11)
into the Fourier domain by substituting s = jw, where j = v—1:

Yaljw) = CoH ,(jw), yielding

_Cawz(_wz + w%v, B ZCWOJW‘IOJ)

Yo <jUJ) - (_WZ + w%x + 2Cawu<jw)(_w2 + wgz - ZCwaajw)
(12a)
_ —C o [(—w? + w2) — 2( qwajw (126)

(= 4 w2)? +4CQune?

which when plotted, looks like a lopsided circle that is almost sym-
metrical about the imaginary axis and almost tangent to the real
axis (Fig. 6).

Substituting w = w,, produces

jCwt2¢, . C,
Ya (]w) Cz ) :J2< (13)

which means that y,, (jw) evaluated at the natural frequency w,, lies
on the imaginary axis.
In general, the damped natural frequency can be expressed as

= \/1-cw, (14a)

Jilgroe o

where (, = damping ratio. Therefore, w,, = w, to the order of (,.

Now it is time to solve for the frequency that results in an am-
plitude of —3dB, which is a factor of 1/+/2. Starting from
[Va(jws ag)| = Ca/(2v/2C,,), by expanding, rearranging, simplify-
ing, and approximating using the Taylor expansions, at the follow-
ing is obtained:

. wa(l _Ca) Wi
%“_{%U+@)— w, "

where w; = frequency smaller than w, at which the amplitude
is 3 dB (or V2 times) lower than the peak amplitude; similarly,
w, = frequency greater than w, at which the amplitude is 3 dB
(or v/2 times) lower than the peak amplitude.

Rearranging the expressions for w; and w,, then (, can be
solved for with

20log|y| (g dB)

10 20 30 40 50 60 7080 100 200
Frequency(Hz)

300 400 500

Fig. 5. Examples of the amplitude versus frequency data of the accelerometer measurements of Locations 1, 2, and 3 (given in Fig. 4) smoothed using
a 10-sample moving average; an obvious mode can be observed around 34.5 Hz as peaks are observed in all three sensors
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Im{y.(w)}

w=w,
WRW(1-()=w, WRW,(1+4,)
=w2
wW=00 w=0
N Re{y,(w)}
/ \
1 1

Fig. 6. Theoretical circle plot of accelerometer measurements plotted
in the Laplace domain; the dotted curve represents the complex con-
jugate set mirrored about the real axis; w; and w, correspond to the
9 o’clock and 3 o’clock positions of the circle, respectively

Table 2. Damping Ratios of the Fundamental (34.5 Hz) Mode Calculated
Using the 3 dB Approximation at Three Sensor Locations

Sensor (z) w; (Hz) w, (Hz) w, (Hz) C, (%)
1 32.02 35.04 34.17 4.4
2 34.33 35.49 35.19 1.6
3 33.50 35.37 34.77 2.7
Wy — W
=t (16

«

which represents the viscous damping ratio in Eq. (6). An example
of the calculations for (, is presented in Table 2.

Least-Squares Fit for Nyquist Plot

In order to find the best C,, that fits the experimental data, a least-
squares fit can be performed that solves for C,, that minimizes the
cost function § = >_; 1Y, (jw;) — Co.H,(jw;)|> where i is the in-
dex along the FFT result’s vector (Maia and Silva 2001). Recall
that H, is defined in Eq. (11). In order to minimize g, take the
derivative with respect to C,, and set it to zero

a3 v . ,
f = _Zzgle[ya(./wi)l_lw(jwi)] + ZCQZ‘HQ(‘]Q}I')'Z =0
(17)
Solving for C,, yields
eV} (jw;)H, (jw;
¢ _ ZelYaljen)Hy o) )

SIH (o)

The physical interpretation of this least-squares method is
shown in Fig. 7, where the best-fit lines represent C,H, and
the measured curves represent y,,.

Another method of solving for C, is by using the geometrical
fact that the circle plot of accelerometer measurements is approx-
imately a circle with the maximum sitting on the imaginary axis
(Fig. 6). Combining with Eq. (16), C,, can be directly expressed
as C(_l’ = ZCUL‘{‘\‘Sm[yOé (]wa)]

The comparison between the two methods is presented in
Table 3, which reveals that the differences are small. Therefore,
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5t |
1z Acc.
(bt fit)
-15 -10 -5 0 5 10
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Fig. 7. Samples of measured circle plots near the 34.5 Hz peak (w; to
w, range) fitted using a least-squares circular regression

Table 3. Comparing C,, Solved Using the Least-Squares Method and the
Maximum-Amplitude Method at Three Sensor Locations

Sensor (z) Least squares Maximum amplitude Difference (%)
1 0.7832 0.8084 32
2 0.4002 0.3946 14
3 1.4137 1.3833 2.2

Note: The label z indicates the z-direction of the triaxial accelerometers.

only the maximum amplitudes will be used to compute the ampli-
tude ratios.

Amplitude Ratios

Recall in Eq. (10b), the combined amplitude coefficient C, =
Vs aWaof for accelerometer measurements. Even though C, can
be computed from the circle plots of the physical measurements,
no knowledge is had regarding the terms inside of C,, namely,
the sensor measurement amplitude coefficient 1 ., the plant am-
plitude coefficient 7, ., and the impact strength f.

In the simulation model, the modal amplitudes are normalized
for each mode shape and do not actually represent physical ampli-
tudes of the gondola. Therefore, the comparison between C, with
simulation measurements must be done with ratios where the un-
known constant coefficients (¢, , and f) are cancelled out, leaving
only the ratios of the sensor measurements

M d)x.a(rl) (19)

Ca (rZ) B 1/Jva (1'2)

where r; and r, = two different sensor locations.

It is crucial to recognize that the true benefit of using this ratio is
that it does not depend on the strength of the impact (f) or where
the impact takes place (¢, ). In fact, this would be true for other
types of responses as well: the Fourier transform of the input can-
cels in the ratio. However, the impulse response (or near-impulse
response) has the added advantage of having a constant (or near-
constant), specifically non-zero, amplitude across all frequencies.
Its cancellation in the amplitude ratios would not only maintain
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Fig. 8. Visualization of a set of amplitude ratios computed from two sets of measured amplitudes; the amplitudes at Location 1 is divided by the

amplitudes of Location 2 across all frequencies

a near-constant signal to noise ratio but also avoid division-by-zero
situations that may be true for other responses. Additionally, the
constant (or near-constant) amplitude across all frequencies is also
required for the Nyquist (circle fit) analysis in order to produce the
desired circles. However, it was shown previously that the C, ‘s
resulted from the least-squared fit of the Nyquist circles were very
close to those resulted from just measuring the peaks, which does
not require a flat response. In principle, one could determine the
shape of the impulse from the FFT of a single accelerometer meas-
urement using the mathematical form of the response in the vicinity
of several modes.

Matching Mode Shapes with Natural Frequencies

Now that all of the mathematics behind the modeling of the BIT

structure have been established, the ultimate and most crucial por-

tion of the procedure can now be discussed: the actual identification

of the mode shapes of the gondola. Due to the large sets of imper-

fect data collected through the numerous sensors and repeated im-

pacts and the inability to fully manipulate the simulation model,

certain heuristics are developed for this identification procedure.

The procedure can be broken down into five steps:

1. Extracting modal amplitudes from simulation at the sensor
locations;

2. Determining largest amplitude for each simulated mode shape;

3. Calculating the amplitude ratios for all sensors of each mode by
dividing by the largest amplitude of that mode;

4. Take amplitude ratios of measured data of accelerometer im-
pulse response; and

5. Compare measured amplitude ratios with simulated amplitude
ratios.

Steps 1 to 3 are fairly straightforward. However, there are a
couple of immediate problems trying to perform Steps 4 and 5: the
measured results are continuous spectra, meaning there are no dis-
tinct modes to select the ratios. Additionally, the measured results
have much of the noise of the real structure expressed in them as
well as noise from the measurements.

The latter problem can be ameliorated by lightly smoothing the
amplitude versus frequency curves using a simple averaging filter.
From the raw data, there are approximately 1,260 indices per Hertz
(in the frequency domain). By taking the average of a sliding win-
dow of 10 samples in the frequency domain, the amplitude plots
will be much smoother (to a resolution of approximately 0.008 Hz)
and less likely to produce erroneous spikes in the ratios.

To solve the former problem, a ratio is taken for every frequency
step. To do this, the FFT results of all 21 sensors are converted to
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amplitudes at the 15 locations. Specifically, triaxial sensors at
Locations 1, 4, and 5 (Fig. 4) are converted using +/|x|>+|y|*+|z|*
where X, y, and z are complex values (from the FFT results), and
the rest of the amplitudes extracted by taking |z| of the FFT results
from the single-direction sensor measurements.

Once all of the amplitudes are extracted, they are divided by the
amplitudes of the chosen sensor for each frequency to act as the
denominator, in this case, the amplitudes of Sensor 2. An example
of this process can be seen in Fig. 8. This is done for all of the
amplitudes of the FFT results for all of the impacts to produce
the ratios.

In Step 4, 15 amplitude ratios are generated for each frequency
step and for every impact experiment. In Step 5, the goal is to de-
termine which of these matches best for each of the 15 amplitude
ratios for each of the simulated modes (Step 3).

Comparison Metric

There are many ways to evaluate how well the measured ratios
match the simulated ratios. In the literature, y? tests and covariance
analyses are some common methods to identify correlations be-
tween sets of data. Without invoking metaparameters that are nec-
essary to correctly perform and interpret those methods, the authors
decided to use the simple yet intuitive method of comparing the
sum of squared differences (called norm?), between the simulated
15 amplitudes and the measured 15 amplitudes for every frequency
and impact.

A squared difference, rather than a signed difference, was
chosen because the simulated amplitude measurements that were
made were unsigned. With signed amplitude ratio measurements,
a signed difference sum, such as £norm? or 4norm, would be a
better metric. Additionally, since the items being compared are ra-
tios, they are dimensionless and are invariant to scaling.

Since a smaller value corresponds to a better match, in order to
highlight values that are close to each other, an inverse of the
squared difference sum value (1/norm?) is taken to generate the
ordinate-axis of the figure. Figs. 9 and 10 show the results of such
a comparison for the second and third simulated mode shapes. At this
point, the comparison portion of the experiment can be concluded.

Results and Applications

The results of the comparisons between simulated and measured
amplitude ratios are summarized in Fig. 11. Three mode shapes
are confidently identified at 34.5, 40.9, and 79.2 Hz.

The goal of this experiment is to discover a methodology to
determine the natural frequencies and mode shapes of a large
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Fig. 9. Inverse of the sum of the squared differences between the measured and simulated ratios of elastic Mode 2 (at the simulated natural frequency
of 41.8 Hz); the measured and simulated ratios seem to be highly correlated for this particular mode
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Fig. 10. Inverse of the sum of the squared differences between the measured and simulated ratios of elastic Mode 3 (at the simulated natural frequency
of 71.6 Hz); no correlation is observed at the modal frequency; although a peak can be seen around 35 Hz, the scale is much less than that of Fig. 9,
indicating that the peaks in this figure are likely from noise
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Fig. 11. Matching of mode shapes and frequencies, showing both simulated and measured natural frequencies, as well as a selection of the FFT
amplitude plots of the input response measurements; three mode shapes are identified at 34.5, 40.9, and 79.2 Hz
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mechanical structure. This was completed through the system iden-
tification of the BIT gondola. This methodology can be used in the
development of future balloon-borne experiments where it is im-
portant to determine structural vibrations for high-fidelity control
systems. Originally, the control system of BIT was to incorporate
the identified frequencies and mode shapes. However, it was de-
cided that this was not necessary for the successful operation of
BIT, as the lowest mode (34.5 Hz) is above the control bandwidth
(30 Hz maximum).

Even through the mode shapes were unused in the final control
system of BIT project, the natural frequencies determined in this
experiment might still be important for the control system of
BIT. Due to the sensitive nature of the pointing controls, band-pass
(boxcar) filters were used on the gyro input during BIT’s flight to
mitigate resonances at around 25-30 Hz.

Discussion

There are many interesting observations that can be made about the
comparison between simulated and measured amplitude ratios. It is
immediately obvious that there are frequencies with greater than
average correlations. Specifically, there are discernible peaks at
around 34.5, 40.9, 47.7, 58.3, and 79.2 Hz. An example of such
a peak is shown in Fig. 9 for the 40.9 Hz mode. The vertical line
in Fig. 9 shows the natural frequency of the corresponding mode as
simulated by SolidWorks Simulation. On the other hand, no ob-
vious correlation can be observed in several simulated modes, such
as Mode 3, Mode 5, and Mode 6. It seems like with the exception of
these, the natural frequencies all correspond to an observable peak.
An example of this is shown in Fig. 10, where the ratios are taken to
match Mode 3 of the simulated modes.

Mean Correlation Data for Natural Frequencies

The most obvious thing to be said about the mean correlation data
(black bold curves in Figs. 9 and 10) is that its peaks correspond to
natural frequencies. Specifically, there is a simulated frequency that
matches the peaks of 34.5, 40.9, and 79.2 Hz. By extension, the
mode shapes corresponding to the natural frequencies represent
those of the gondola expressed at those frequencies.

Although this interpretation is simple and direct, there are sev-
eral discrepancies that potentially undermine the correctness and
usefulness of the results. For instance, there is a peak at around
58.3 Hz that does not match any of the simulated natural frequen-
cies; there is more than one peak per mode shape; and, the averages
over all the impacts are significantly different from the results of the
individual impacts.

Error Characterization and Areas for Improvement

For a large experiment such as this, involving a significant amount
of engineering heuristics, there exist many areas for improvement.
Several of these areas are presented here that might facilitate
potential future experiments.

Multiple Peaks in the Least-Squares Plots

In the least squares fit of the Nyquist circles [Eq. (18)], the goal was
to match the simulated modal amplitude ratios with the measured
modal amplitude ratios. This was done by taking the sum of the
squared difference between the two for each frequency. Ideally,
if the modal amplitude ratios match perfectly (or very closely)
for that mode, the sum of the squared difference would be near zero.
Since all of the mode shapes are different, that would also mean the
sum of the least-squares difference would not be near zero for all
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other frequencies. If it were a perfect setup, a single peak would be
expected in each of Figs. 9 and 10, representing the natural fre-
quency corresponding to the mode shape. Instead, many peaks can
be seen, even worse for the individual (unaveraged) impacts.

The explanation for this phenomenon is actually quite simple:
the mode shapes are not entirely independent. For instance, the first
two elastic modes have similar relative modal amplitudes at the
same sensor locations. Modes 3 and 4 have similar shapes but out
of phase about the symmetrical plane. Between Modes 2, 3, and 4,
the bellowing motions of the L-corners at the front of the gondola
are all observed. Between the modes chosen for analyses, the differ-
ences between them are observably fewer than the similarities be-
tween them. This is what causes the average (black bold) curves in
Figs. 9 and 10 to look similar to each other.

A possible way to overcome this problem is that rather than
comparing all of the ratios together, individual ratios must be se-
lected out to characterize the differences and similarities between
every two mode shapes. Great care would be needed to avoid con-
firmation bias when selecting measurements for comparison. The
downside to this method is that the process can no longer be auto-
mated, at least it will not be as simple as finding the least-squares
difference.

Unsigned Ratios

In addition to the similar mode shapes, this problem is exacerbated
by the fact that the amplitude ratios are generated using only the
amplitudes of the peaks, rather than using the least-squares circle
fits. This would also mean that the ratios are unsigned; it would be
impossible to tell if geometries are moving in-phase or out-of-phase
with each other. Consequently, this problem can be ameliorated by
using the C, ratios solved by taking the least-squares fit and com-
paring them to the signed amplitude ratios measured from a signed
measurement of the simulated amplitudes. The latter was not done
due to the difficulty in extracting the directional amplitudes from
SolidWorks Simulation. Even though the usage of only the norm of
the amplitudes is sufficient in this work as a proof-of-concept, the
authors expect much clearer results can be achieved using direc-
tional amplitudes that are extracted from a more user-accessible
simulation package.

Impact Locations

Even though that, theoretically, the measurement results should be
independent from the impact location, observations show that the
results vary quite significantly depending on the location of impact.
As can be clearly seen in Figs. 9 and 10, different impacts resulted
in vastly different matches with amplitude ratios even though gen-
eral trends are maintained.

Although the discrepancy is undesirable, there exists a simple
explanation for this phenomenon. Take for instance the difference
between an impact that was performed at the bow of the gondola
and an impact that was performed at the stern of the gondola. The
bow impact resulted in highly correlated data whereas the stern im-
pact resulted in much flatter data. This is because the bow of the
gondola is where the modal amplitude is maximum for most of the
simulated modes whereas the stern of the gondola is where the mo-
dal amplitude is the least for most of the modes. This would mean
that the structural response for bow impact would be much greater
than that of the stern impact, as by the time the shock propagated to
the front to excite the bow modes, it would have been significantly
damped.

Damping

Many of the imperfections of the results are caused by working
with a highly damped structure. Using the fact that C, =
2¢,Sm{y,(jw,), ¢, can be approximated using the formula
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(wy —wy)/(2w,,), where w; and w, are the frequencies surrounding
the natural frequency that correspond to approximately 3 dB below
the peak amplitude. As presented Table 2, all of the damping ratios
seem to be below 10%, which is consistent with what is expected of
honeycomb structures such as the BIT gondola.

The calculations in Table 2 are done for some of the most promi-
nent peaks in the results. For the less-prominent (more spread-out)
peaks, the damping ratios would be much higher. The greater the
damping ratio, the greater the difference between real and theoreti-
cal results. Most of the discrepancies in the modal frequencies can
be attributed to this fact.

Mass Consistency

A crucial consistency check for the integrity of the model definition
is that the total mass should be fairly close to the mass of the real
structure. This step is critical in the accuracy of the simulation re-
sults, because, in a naive sense, the natural frequencies are propor-
tional to the mass of a structure. Unfortunately, this was not done
for the simulation model of the outer frame because of the limited
access the user has on the simulation data of SolidWorks Simula-
tion. It is likely that this has contributed to a portion of the inac-
curacies in the results.

A trick that can be employed to reverse engineer the simulation
mass is by recognizing the fact that the normalization of the result-
ant mode shapes is generally done through the mass matrix (which
was checked by simulating a trivial case). For an unconstrained
body, the modal analysis would result in six rigid-body modes,
—generally three in translation and three in rotation. If at least
one translation mode is sufficiently decoupled from the other five
rigid-body modes, its magnitude can be used to calculate the total
mass of the system. Using the orthogonality property of Eq. (4),
[ty ;dV = 6,5, for any of the three translation modes of
the system, the mode shape would be independent of the mass
operator

! [/v (J’ldV:| v.=1 (20)
wiv. [ oav =1 (1)
wiy,m =1 (22)
"= ﬁ (23)

where y. = any rigid body translation mode; o = local density (or
the elemental mass in the case of the FEA) of the system; 1 =3 x 3
identity matrix; and m = total mass of the body. Using Eq. (23), the
total mass of the system is simply the inverse-square of the modal
amplitude of any translation mode.

This simple formula offers a nice sanity check for the mass of
the system if a translation mode can be identified from the results.
For the simulations performed in this paper, the model is estimated
using this method to be around 250 kg, which is consistent with the
mass of the gondola. An iterative process would be required to
match the simulated mass and the physical mass. Even though this
process was not considered for this paper, it is highly recommended
for future experiments.

Single Shell Simulation

To avoid overly complicating the problem, the simulation was per-
formed on the shell model for the outer frame only, even though the
measurements were done on the gondola with all three frames. This
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simplification slightly undermines the accuracy of the results. How-
ever, since there is minimum coupling between the frames, they can
be treated as independent systems. A future iteration might include
an accurate modeling of all three frames of the gondola for simu-
lation. This can be done by defining flexible connections between
the frames using pin connections. This pin connection allows for a
rotational degree of freedom but is constrained in all other direc-
tions. It is of great interest to see the effects of coupling between the
frames on the simulation results.

Summary and Conclusion

A method of combining simulation results with measurement re-
sults for the purposes of modal system identification was developed
in this paper. For the BIT gondola’s outer frame honeycomb sand-
wich panel structure, the three modes were confidently identified at
34.5, 40.9, and 79.2 Hz. Their corresponding mode shapes were
also identified to be the breathing motions of the gondola front
opening. These mode shapes were generated using SolidWorks
Simulation and were compared with measured values through am-
plitude ratios. The frequencies were generated from the peaks in the
amplitude versus frequency curves derived from the physical mea-
surements, which were made using analog accelerometers placed
throughout the gondola. This method of comparing amplitude ra-
tios introduces a novel way of identifying mode shapes without the
necessity of a prohibitively large number of sensors or an imprac-
tical amount of detail in the simulation model, because the infor-
mation between the simulation and physical measurements are
cross referenced statistically.

The identified mode shapes can be valuable because they can
provide insights on the structural changes that can be performed
to improve the resonant behavior of the system. Additionally, a
much more sophisticated project design might be able to incorpo-
rate the frequency and mode shape results in a highly advanced
control algorithm that can take advantage of the otherwise deleteri-
ous elastic behaviors. Future iterations of the identification tech-
niques may involve (1) the analyses of the measurement results
in greater detail, such as the incorporation of phase and directional
measurements; (2) creating a better and more computationally acces-
sible simulation model, possibly using another more-dedicated sim-
ulation package; and (3) refining the measurement systematics for
greater accuracies of measurement results.

Notation

The following symbols are used in this paper:

C, = Y500, 0f (relative amplitude constant);
D = damping operator;
E = Young’s modulus;

EI = bending stiffness (product of E and I);
f = impulse strength coefficient;

H, = Nyquist circle of the ath mode;
I = second moment of area;

i = FFT output vector index;
3 = least squares cost function;
JIm = imaginary component of input complex function;
j = v/—1 (imaginary unit);
KC = partial differential stiffness operator;
K., = stiffness matrix of an elastic body;
A = partial differential mass operator;
M,, = mass matrix of an elastic body;
m = total mass of an elastic body;
n, = impulse direction vector;
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n, = sensor measurement direction vector;
O = big O notation;
q, = eigenvector (mode shape) of an elastic body;
Ne = real component of input complex function;
r = spatial location vector;
r, = impulse location vector;
r, = sensor measurement location vector;
s = Laplace domain complex variable (frequency);
t = time;
V = space occupied by the elastic body;
w = vector function of the deformation field of an elastic
body;
X = axial direction of the material definition in SolidWorks
Simulation;
XY = shear direction of the material definition in SolidWorks
Simulation;
x = FFT result vector of the x-component measurements of a
triaxial accelerometer;
y = FFT result vector of the y-component measurements of a
triaxial accelerometer;
y = sensor measurement output (y(7) in time domain; y(s) in
frequency domain);
Vo = CoH, [the component of y(s) corresponding to the ath
mode];
z = FFT result vector of the z-component measurements of a
triaxial accelerometer;
« = modal index;
([ = modal index;
6 = Dirac delta function;
0o = 1if a = 3; 0 if a # 3 (Kronecker delta);
(, = damping ratio of the ath mode;
7, = modal coordinate of the ath mode;
o = mass density (elemental mass);
7 = translational rigid body modal index;
Yaa = wk(r,)n, (amplitude of mode shape evaluated at impulse
location);
.o = nly,(r;) (amplitude of mode shape evaluated at
accelerometer location);
v, = eigenfunction (mode shape) of the ath mode;
w = Fourier domain variable (frequency);
w; = frequency less than w, at which the amplitude is 3 dB
below the peak;
w, = frequency greater than w,, at which the amplitude is 3 dB
below the peak;
w, = natural frequency of the ath mode;
wy, = damped natural frequency of the ath mode;
© ASCE
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T

(1)} = vector transpose;
(:) = first-order differentiation with respect to time f;
( second-order differentiation with respect to time #; and
) complex conjugate operator;
0 = null vector; and
1 = identity matrix.

—
[N
1
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