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Abstract

The frequency-domain description of the potential function corresponding to a sinusoidal progressing wave can form the basis for
describing an arbitrary incident wave field in linearized free-surface hydrodynamics. Fourier techniques make it possible to relate the
incident sea state to the resulting hydrodynamic forces on a floating body. This paper develops a rational description in the frequency
domain for the corresponding dynamical system which can then be realized in the time domain as a system of constant-coefficient differential
equations driven by incident wave height at a datum and whose output is the Froude–Krylov force. This is made possible by showing that the
time-domain version of the potential for a sinusoidal progressing wave satisfies a fourth-order time-varying ordinary differential equation
(ODE) analogous to that satisfied by the three-dimensional time-domain source function. Laplace transformation of this ODE followed by
bilinear transformation supplies the analytical basis for generating the rational approximation. Various causality issues associated with the
diffraction forces are neatly handled by the approach presented here.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When one considers the small motions of a floating body
in the presence of small amplitude incident waves, the
hydrodynamic pressure forces can be taken to arise from
three sources: the incident wave field, the scattered field
produced by the presence of the body (collectively referred
to as the diffraction field), and the motion of the body (radia-
tion field). For purposes of modeling the floating body, it is
natural to consider the dynamical systems which produce
these forces under the action of appropriate inputs. For the
radiation forces, the inputs may be taken as the (general-
ized) body velocities whereas for the diffraction problem it
is natural to consider the amplitude of the free-surface
elevation at some reference location. In the sequel, the
corresponding dynamical systems are referred to as the
radiation (mapping) impedance and the diffraction mapping.

For the linearized version of what is ultimately a time-
invariant problem, these dynamical systems can be realized
by time-invariant convolution integrals which can be inter-
preted as inverse Fourier transforms of the product of the
Fourier transforms of the impulse response and the corre-
sponding input. From linear system theory, it is known that
the Fourier transform of the impulse response of a linear

time-invariant (LTI) system is equivalent to the complex
amplitude of steady-state sinusoidal responses. Hence, in
principle, transient solutions for the radiation and diffraction
forces can be obtained using the inverse Fourier transform
in conjunction with the solution of the corresponding
steady-state time-harmonic problem at many frequencies.
The connection between the time- and frequency-domain
formulations of linear water wave problems was noted by
Cummins [1] and Wehausen [2].

Finite-dimensional approximations of LTI systems can
also be written in state-space form which is no more than
a nonhomogeneous system of first-order constant-coefficient
ordinary differential equations (ODEs). The goal of the
present paper is to obtain a state-space representation for
the diffraction mapping. Yu and Falnes [3] were motivated
by the same goal and used curve-fitting techniques that ulti-
mately required a description for the complex force ampli-
tudes at many frequencies. They ‘fitted’ the state-space
system using time-domain impulse response data obtained
using numerical inverse Fourier transforms of the
frequency-domain information.

Falnes [4] has pointed out that the diffraction mapping is
ultimately noncausal (i.e. the diffraction forces start before
the datum wave height ‘begins’). Yu and Falnes demon-
strate that the diffraction mapping can be made approxi-
mately causal by shifting the spatial datum for the
incident field up-wave of the body or by time shifting the
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impulse response, effectively delaying the force output rela-
tive to the wave input. Damaren [5] also realized the diffrac-
tion mapping by a state-space system but the fitting was
conducted in the frequency domain using appropriate
rational functions. The key idea was the recognition that
linear, constant-coefficient ODEs in the time domain corre-
spond to rational dependence on the frequency variable in
the frequency domain. Causal approximations were
obtained by forcing the rational descriptions to have poles
in the left-half of the complex plane.

Many authors have been concerned with the transient
motion of floating bodies but the majority of this work has
treated the radiation problem. We mention Yeung [6],
Newman [7], Beck and Liapis [8], and Pot and Jami [9],
all of whom used the time-domain source function in
conjunction with the transient version of a Fredholm inte-
gral equation. Analogous calculations for the diffraction
problem (for bodies with forward speed) have been
presented by Beck [10] and Korsmeyer and Bingham [11].
A rational approximation for the three-dimensional (3D)
(frequency-domain) Green’s function was obtained by
Damaren [12] and used to obtain a rational description for
the radiation impedance. This was obtained using the
fourth-order time-varying ODE which Cle´ment [13] has
shown is satisfied by the time-domain source function.
These calculations are analytical in character and permit a
state-space description of the transient radiation problem
without solving the frequency-domain problem at several
frequencies. This paper presents the corresponding treat-
ment of the diffraction problem.

The main result that is presented and exploited here is the
fourth-order ODE satisfied by a family of two-dimensional
(2D) “source” functions. These include the 2D (time-
domain) Green’s function and the time-domain potential
corresponding to an impulsive change in free-surface eleva-
tion. The Fourier transform of the latter is the usual potential
function attributed to a sinusoidal plane progressive wave.
With this ODE in hand, the analytical techniques presented
by Damaren [12] are used to develop rational approxima-
tions for the frequency-domain quantities. Multiplication of
these “source” functions by an “input” function in the
frequency domain yields convolution operators in the time
domain whose action can be obtained as the “output” of a
system of linear constant-coefficient ODEs corresponding to
the rational approximation.

The main application treated here is the time-domain
calculation of the transient Froude–Krylov force. In this
case, the “input” referred to above is the transient incident
wave height at a suitable datum and the “output” is the
generalized exciting (Froude–Krylov) force in a general
degree of freedom. The computational load required to
generate the state-space model relating the two is on the
order of that required to solve the frequency-domain
problem at one frequency. Furthermore, being a standard
state-space model, it is readily combined with structural
and rigid-body motion equations and the corresponding

treatment for the radiation problem developed in Ref.
[12]. It is the explicit nature of the model which is most
important and makes it suitable for applications such as
control system design.

As mentioned above, the diffraction mapping is noncau-
sal which in the time domain manifests itself as an impulse
response that is nonzero for negative values of time and in
the frequency domain by poles in the right-half of the
complex plane. In physical terms, a wave height time
history that begins att � 0 generates exciting forces that
begin beforet � 0; this is obviously problematic in a simu-
lation environment. Causal approximations can be obtained
in a number of ways. Here, it is argued that truncation of the
anticausal part of the potential function corresponding to an
impulsive wave height in the time domain is a reasonable
way to proceed and is easily accomplished using the meth-
odology presented here. In the (complex) frequency
domain, this corresponds to neglecting those contributions
to a partial fraction expansion whose poles lie in the right-
half of the complex plane. It is an optimal causal approx-
imation to the incident wave potential function in the sense
that it minimizes the energy of the potential error (the differ-
ence between the true potential and its causal approxima-
tion) corresponding to an impulsive change in wave height
at the datum. Our primary interest here is the transient
description of the Froude–Krylov force given the incident
wave. However, the scattering component of the total
diffraction force will also be described using the transient
form of the Haskind relations.

2. The water wave diffraction problem

Consider the small motions of a floating bodyB in the
presence of an incoming wave field. The free surface eleva-
tion in the absence of the body is described byzI�r ; t� where
r � �x y z�T: Thez-axis is vertically upwards and the origin
of the coordinate system lies in the undisturbed free surface
and corresponds to a datum for describing the incident field:
z0�t� W zI�0; t�: The motions of the body are described by
w�r ; t� � �w1 w2 w3�T and

w�r ; t� �
XN
a�1

Ga�r �ua�t� �1�

whereGa are shape functions which include the six rigid-
body motions.

The wetted surface ofB is denoted byS andn(r ) is the
outward normal toS. If p(r ,t) is the fluid pressure, then the
fluid pressure force in “mode”a is given by

fa�t� � 2
Z

S
pna dS; na�r � W nTGa: �2�

Given the assumptions that the fluid medium is incompres-
sible, of constant density, inviscid, and irrotational, the fluid
mechanics can be described by the velocity potentialF�r ; t�:
If the ocean is modeled as infinitely deep and of infinite
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extent, the velocity potential satisfies

7 2F � 0; r [ V;
2 2F

2t 2 � 2g
2F

2z
; r [ F;

lim
z!2 ∞

2F

2z
� 0;

�3�

whereF � { z� 0\B} denotes the free surface andg is the
acceleration due to gravity.

The standard decomposition ofF is used here

F � F I 1 FS 1 FR; FR �
XN
a�1

fRa p _ua �4�

whereF I ; FS; andFR are respectively, the incident, scat-
tered, and radiated fields, and (p ) denotes temporal convo-
lution. Each function is a solution of the boundary value
problem in Eq. (3) and

2F I

2z
�r ; t� � 2zI

2t
; r [ F; �5�

2FS

2n
�r ; t� � 2

2F I

2n
�r ; t�; r [ S; �6�

2FRa

2n
�r ; t� � na�r �d�t�; r [ S: �7�

In addition, the scattered and radiated fields satisfy certain
regularity conditions asr W

���������
x2 1 y2

p ! ∞:

The radiation problem has been treated in the spirit of this
paper elsewhere. Therefore, our attention is restricted to the
diffraction field which is identified withFD W F I 1 FS:

The linearized form of the Bernoulli relation implies that
the corresponding hydrodynamical contribution to Eq. (2) is
given by

fDa�t� � fIa�t�1 fSa�t�; �8�

fIa�t� � r
Z

S

2FI

2t
na dS; �9�

fSa�t� � r
Z

S

2FS

2t
na dS; �10�

wherer is the fluid density. The contributionfIa�t� is the
Froude–Krylov force.

The primary goal of the paper is to obtain an explicit
representation for the dynamical system relatingz0�t� to
fIa�t�: To this end, the Laplace transform ofz0 is defined by

L{ z0�t�} � ~z 0�s� �
Z∞

0
e2stz0�t� dt; Re{ s} . 0;

a notation used throughout. The corresponding Fourier
transform will also be used and is designatedF{ z�t�} �
~z 0� jv�; and in the absence of arguments, say~z 0; the Fourier
transform is intended. The inverse Fourier transform is

z0�t� �F21{ ~z 0� jv�} � 1
2p

Z∞

2 ∞
~z 0� jv�ejvt dv: �11�

The velocity potential corresponding toz0 is given by

F I�r ; t� � 1
2p

Z∞

2 ∞
~f I�r ; jv� ~z 0� jv�ejvt dv �12�

where

~f I �r ; jv� � jg
v

ekz2jk 0x �13�

with

k � v2
=g; k 0 � k sgn�v�:

The potential in Eq. (13) when multiplied by ejvt is recog-
nized as that corresponding to a plane progressing wave in
the positivex-direction with time dependence of this form;
hence, Eq. (12) represents a superposition of such waves. It
is readily verified that

zI�x; y; t� � 2
1
g
2F I

2t

����
z�0
� 1

2p

Z∞

2 ∞
~z 0� jv�e2jk 0x ejvt dv

�14�
which yields Eq. (11) upon settingx� 0.

Taking the inverse Fourier transform of Eq. (13) yields
the required transient form:

fI�r ; t� � jg
2p

Z∞

2 ∞
1
v

ekz2jk 0x1jvt dv

� Re
jg
p

Z∞

0

1
v

ekz2jkx1jvt dv
� �

� g
p

Z∞

0

1
v

ekz sin�kx2 vt� dv

� g
p

Z∞

0

1
v

ekz sinkx cosvt dv

2
g
p

Z∞

0

1
v

ekz coskx sinvt dv

� g
2p

Z∞

0

1
k

ekz�sin kx cos
���
kg

p
t 2 coskx sin

���
kg

p
t� dk:

�15�
Physically,fI corresponds to the potential resulting from an
impulsive change in the free surface elevation at the origin,
z0�t� � d�t�: As mentioned in the introduction,fI�r ; t� ± 0
for t , 0 and hence is noncausal. In other words, the wave
field required to produce the impulsive wave at the origin
must start before then. This is an artifact of a description
which is restricted to waves propagating in a single
direction.

Given the form of Eq. (12), the general expression for the
time-domain potential is

F I�r ; t� � fI p z0 �
Z∞

2 ∞
fI�r ; t 2 t�z0�t� dt �16�

which can be substituted into Eq. (9) to yield the Froude–
Krylov force. Taking Fourier transforms in Eq. (9) gives the
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frequency-domain description for these exciting forces:

~f Ia � ~HIa� jv� ~z 0; ~HIa� jv� W jvr
Z

S
� ~f Ina� dS �17�

and a similar construction applies to~f Da: The goal here is a
formulation in the frequency domain which yields an
approximation to ~HIa exhibiting rational dependence on
frequency. This allows the diffraction mapping to be
realized as a linear system of constant-coefficient differen-
tial equations forced by the reference wave motionz0�t�: In
our previous work [5], this was accomplished by fitting
values of ~HIa� jv� with rational functions ofs that were
analytic in the right half-plane. This required solving the
frequency-domain boundary value problem at many
frequencies for each modena:

In this paper, the rational description will be constructed
analytically with causality as an essential feature of the
development. SincefIa�t� � HIa p z0�t� must be linear
time-invariant, a finite-dimensional approximation must be
of the state-space form

_xI�t� � AIxI 1 BIz0�t� �18�

fIa�t� � CIxI 1 DIz0�t� �19�
where xI�t� is the n-dimensional state vector and
{ AI ;BI ;CI ;DI } are constant matrices of appropriate dimen-
sion. Taking Laplace transforms in to Eqs. (18) and (19)
yields

~f Ia�s� � �CI�s1 2 AI�21BI 1 DI� ~z 0�s�: �20�
By obtaining ~HIa�s� in this form, the transient description in
Eqs. (18) and (19) will follow immediately.

3. Causal approximation

Analogous to Eq. (16) for the incident potential, Eq. (17)
yields the convolution

fIa�t� �
Z∞

2 ∞
HIa�t 2 t�z0�t� dt �21�

or in the frequency domain~f Ia�s� � ~HIa�s� ~z 0�s� where, in
this section, in-general,�~·��s� denotes the double-sided
Laplace transform. Let us define the following spaces of
time-domain functions:

L2�2∞;∞� � h�t�u
Z∞

2 ∞
h2�t� dt , ∞

� �
;

L2�0;∞� � h1�t�u
Z∞

0
h2

1�t� dt , ∞
� �

;

L2�2∞;0� � h2�t�u
Z0

2 ∞
h2

2�t� dt , ∞
� �

:

Important for rigorously defining the process of causal
approximation are the Hardy spaces.H2 are the functions
~h�s� which are analytic inRe{ s} . 0 and satisfy the

condition

sup
s.0

Z∞

2 ∞
u ~h�s 1 jv�u 2 dv , ∞:

H'
2 are the functions~h�s� which are analytic inRe{ s} , 0

and satisfy the condition

sup
s,0

Z∞

2 ∞
u ~h�s 1 jv�u 2 dv , ∞:

The spaceL2�2j∞; j∞� are those functions~h�s� for which

i ~hi2 �
��������������������������
1

2p

Z∞

2 ∞
u ~h� jv�u2 dv

s
, ∞

andL∞�2j∞; j∞� are those functions~h�s� for which

i ~hi∞ � sup
v[R

uh� jv�u , ∞:

We have the following decompositions:L2�2∞;∞� �
L2�2∞;0� % L2�0;∞� andL2�2j∞; j∞� �H2 % H'

2 :

The functions inH2 are simply the Laplace transforms of
the time signals inL2�0;∞� and those inH'

2 are the Laplace
transforms of the time signals inL2�2∞; 0�:

Lastly,H∞ contains the functions~h�s� which are analytic
and bounded inRe�s� . 0: It consists of the Laplace trans-
forms of those functionsh(t) which mapL2�0;∞� onto
L2�0;∞� via the convolution operation or, alternatively,
mapH2 onto H2 via multiplication. They correspond to
causal systems and necessarily satisfyh�t� � 0; t , 0: H2

may be identified with the Laplace transforms of thoseh(t)
with finite energy which vanish fort , 0: The rational func-
tions ~h�s� [ H∞ for which lims!∞ ~h�s� � 0 are identical to
the rational functions inH2.

Given a system ~HIa�s� [ L∞�2j∞; j∞�> L2�2j∞;

j∞�; there are two possibilities for defining a causal approx-
imation: (i) find ~h�s� [ H∞ to minimizei ~HIa�s�2 ~h�s�i∞;
or (ii) find ~h�s� [ H2 to minimize i ~HIa�s�2 ~h�s�i2: The
first of these is the Nehari problem for which the optimal
approximation is relatively difficult to determine and typi-
cally satisfies lims!∞ ~h�s� ± 0 although ~HIa�s� ! 0 ass!
∞: On the other hand, ifHIa�t� � h1�t�1 h2�t� with
h1�t� [ L2�0;∞� and h2�t� [ L2�2∞;0�; then the opti-
malH2-approximation is~h�s� � ~h1�s� �L{ h1�t�} ; which
effectively minimizes the energy of the impulse
response error. It is readily computed by truncating
the anticausal part�h2�t�� of HIa�t� and can be accom-
plished by multiplying the right-hand side of Eq. (15)
by H(t), the Heaviside step function, and using its trans-
form in Eq. (17).

4. An ODE for the impulsive wave height potential

In this section, Cle´ment’s treatment of the 3D source
function is extended to certain cases of interest in the 2D
case. In particular, the 2D source function and the potential
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corresponding to an impulsive wave height can be treated.
The basic result is covered by the following lemma:

Lemma. The functions

F�m;`; t� �
Z∞

0
l`e2ml

cos�
���������
1 2 m2

q
l�

sin�
���������
1 2 m2

q
l�

8><>:
9>=>; cos� ��

l
p

t�
sin� ��

l
p

t�

8<:
9=; dl

�22�
satisfy the ordinary differential equation

A4
24F

2t4 1 A3t
23F

2t3 1 �A2 1 �A2t
2� 2

2F

2t2 1 A1t
2F
2t

1 A0F

� 0 (23)

where the coefficients are given by

A4 � 1; A3 � m; A2 � 2�` 1 2�m; �A2 � 1
4 ;

A1 � ` 1 7
4 ; A0 � �` 1 1��` 1 2�: (24)

The proof is given in Appendix A and extends the result of
Clément which applied to a function of the form in Eq. (22)
but the trigonomentric functions cos� ���������1 2 m2

p
l� and

sin� ���������1 2 m2
p

l� were replaced with the Bessel functions
Jv�

���������
1 2 m2

p
l�: In the sequel, the boundary conditions

required to completely specifyF�m;`; t� are denoted by

F�m;`; 0� � B0;
2F
2t
�m;`;0� � B1;

22F

2t2 �m;`;0� � B2;
23F

2t3 �m;`;0� � B3:

�25�

4.1. The 2D Green’s function

Before considering the impulsive wave height potential,
recall that the 2D Green’s function in the frequency domain

[14] can be written as

~G�r ; j; jv� �W log
r j
r1

� �
2 2

Z∞

0

1
k 2 k

ek�z1z�

� cos�k�x 2 j�� dk �26�
where r 2

j � �x 2 j� 2 1 �z2 z�2 and r2
1 � �x 2 j� 2 1 �z1

z�2: The integration in Eq. (26) passes above the pole at
k � k in order to satisfy the radiation condition. This
describes the complex amplitude of the potential field aris-
ing from an oscillating source with frequencyv � ���

kg
p

at
r � j � �j h z� T:

The transient form of this function is obtained using the
inverse Fourier transform:

G�r ; j; t� � log
r j
r1

� �
d�t�2 2 �G�r ; j; t�;

�G�r ; j; t� �
Z∞

0
ek�z1z� cos�k�x 2 j��

���
g
k

r
sin�t ����

gk
p � dk H�t�:

�27�
Here,d�t� is the Dirac delta function andH(t) is the Heavi-
side step function. This describes the time-varying potential
field arising from a source with strengthd�t� at r � j:

By defining

l � kr1; m � 2�z1 z�
r1

; t �
����
g
r1

r
t; �28�

we have �G�r ; j; t �����
r1=g
p � � �����

g=r1
p

F�m;`; t� with ` � 21=2

assuming that the cos� ���������1 2 m2
p

l� sin� ��
l
p

t� combination is
selected in Eq. (22). The corresponding initial conditions for
F and its first three temporal derivatives can be determined
by evaluating Eq. (22) and its derivatives att � 0 and
recognizing that the ensuing integrals have the form of
Laplace transforms (inm ). Hence, we obtain

A4 � 1; A3 � m; A2 � 4m; �A2 � 1
4 ;

A1 � 7
4 ; A0 � 9

4 ; B0 � 0; B1 � m;

B2 � 0; B3 � 1 2 2m2
:
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Table 1
Initial conditions for the fourth-order ODE

F�m;`; t� ` B0 B1 B2 B3�����
r1=g
p

�G�r ; j; t� 2 1
2 0 m 0 12 2m 2�����

r3
1=g

q
2 �G=2x 1

2 0 22m
���������
1 2 m2

p
0 22

���������
1 2 m2

p �1 2 4m2������
r3
1=g

q
2 �G=2z 1

2 0 2m2 2 1 0 2m�3 2 4m2�

�2p=g�fI�r ; t� 21 tan21� ���������
1 2 m2

p
=m
�

2
��������������
p�1 1 m�=2p

2
���������
1 2 m2

p
2

��������������
p�1 1 m�=2p �1 2 2m�=2

�2pr1=g�2fI =2x 0 m
��������������
p�1 2 m�=2p �1 1 2m�=2 12 2m2 �����������������

9p=32�1 2 m�p �4m3 2 2m2 2 3m 1 1�
�2pr1=g�2fI =2z 0

���������
1 2 m2

p ��������������
p�1 1 m�=2p �1 2 2m�=2 22m

���������
1 2 m2

p �����������������
9p=32�1 1 m�p �4m3 2 2m2 2 3m 2 1�

r � �x z�T; j � �j z� T�� 0 forfI �; r1 �
�������������������������x 2 j� 2 1 �z1 z�2p

; t � t
�����
g=r1
p

; m � 2�z1 z�=r1



Note that the nondimensionalized functionF depends
(spatially) only onm . The corresponding expressions for
the Ai, Bi when

F �
�����
r3
1=g

q
2 �G=2x

or

F �
�����
r3
1=g

q
2 �G=2z

are also readily obtained. In this case,` � 1=2 in Eq. (24)
and theBi are tabulated in Table 1.

4.2. The impulsive wave height potential

Referring to Eq. (15) and settingr1 �
���������
x2 1 z2

p
�j � 0�

with

l � kr1; m � 2z
r1

; t �
�����
g
r1

t
r

;

gives

fI�r ; t
�����
r1=g

p � � g
2p
�F1�m;21; t�2 F2�m;21; t�� �29�

where F1 corresponds to the sin� ���������1 2 m2
p

l� cos� ��
l
p

t�
combination in Eq. (22) and F2 to the cos
� ���������1 2 m2
p

l� sin� ��
l
p

t� combination. SinceF1 andF2 satisfy
the ODE in Eq. (23) with the same coefficients given by Eq.
(24) with ` � 21; so does�F W F1 2 F2: The initial condi-
tions for �F can be obtained by evaluating the integral(s) and
their time derivatives in Eq. (22) att � 0. Evaluating the
ensuing Laplace transforms gives

B0 � tan21

���������
1 2 m2

p
m

" #
; B1 � 2

�������������
p�1 1 m�

2

r
;

B2 � 2
���������
1 2 m2

q
; B3 � 2

�������������
p�1 1 m�

2

r
1 2 2m

2

�30�

which must be multiplied byg=�2p� to recoverfI : The
values of the Bi are also given in Table 1 for
�2pr1=g�2fI =2x and�2pr1=g�2fI =2z:

Note that the ODE in Eq. (23) can be integrated forward
and backward in time from the initial conditions att� 0 to
produce the total solution. It will be used here to generate
the causal part through forward integration and corresponds
to multiplyingfI in Eq. (15) by the Heaviside functionH(t).
Since ` � 21; A0 in Eq. (23) vanishes and therefore
fI�r ; t�1 CI is also a solution which can be accommodated
by adding the constant�2p=g�CI to the initial conditionB0 in
Eq. (30). Since the physical quantities velocity and pressure
depend only on the space and time derivatives offI ; it
seems consistent thatfI can be biased in this way. The
value assigned toCI will be discussed in the next section.

5. Rational approximation of the diffraction mapping

In Ref. [12], it was shown how rational approximations

could be constructed for the Laplace transform~F�s� �
L{ F�t�} when F�t� is a solution of the time-varying
ODE in Eq. (23) (the arguments�m;`� are dropped in this
section). We quickly review the procedure here since the
initial conditions in Eq. (25) are more general than those
used in Ref. [12]. Taking the Laplace transform of Eq. (23)
and using the initial conditions in Eq. (25) yields an ODE in
s for ~F�s� :
g2s2 ~F 00�s�1 �b3s3 1 b1s� ~F 0�s�1 �a4s4 1 a2s2 1 a0� ~F�s�

� d3s3 1 d2s2 1 d1s1 d0 (31)

where

g2 � �A2; b1 � 4 �A2 2 A1; b3 � 2A3;

a0 � A0 2 A1 1 2 �A2;

a2 � A2 2 3A3; a4 � A4;

d0 � �A2 2 A3�B1 1 A4B3; d1 � A4B2 1 �A2 2 2A3�B0;

d2 � A4B1; d3 � A4B0:

A rational approximation of~F�s� is required which is analy-
tic in Re{ s} . 0 corresponding to the causal nature ofF�t�:

First, the problem is mapped into the complexz-plane
using the bilinear transformations� �1 2 z�=�1 1 z� and
its inversez� �1 2 s�=�1 1 s� which isomorphically maps
the open right-half of thes-plane onto the open unit disk
uzu , 1: Writing F̂�z� � ~F��1 2 z�=�1 1 z��; and transform-
ing Eq. (31) yields

g2�z2 1�2�z1 1�6F̂ 00�z�1 2�g2�z2 1�2�z1 1�5

1b3�z2 1�3�z1 1�3 1 b1�z2 1��z1 1�5�F̂ 0�z�

14�a4�z2 1�4 1 a2�z2 1�2�z1 1�2 1 a0�z1 1�4�F̂�z�

� 24�d3�z2 1�3�z1 1�2 d2�z2 1�2�z1 1�2

1d1�z2 1��z1 1�3 2 d0�z1 1�4� (32)

where�·� 0 now refers to differentiation with respect toz. If
~F�s� [ H∞; thenF̂�z� is a bounded analytic function in the
unit disk [15] which permits a representation in terms of the
uniformly convergent power series

F̂�z� � lim
N!∞

XN
i�0

hiz
i
; �33�

where the {hi} are known as the Hankel coefficients. Substi-
tuting this into Eq. (32) and matching powers ofz yields an
infinite system of linear equations for the {hi} which can be
truncated atN � 2n:

A rational approximation to~F�s� can be obtained by
letting z� �1 2 s�=�1 1 s� in Eq. (33). State-space
manipulations are presented by Damaren [12] which show
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how to write ~F�s� in the form

~F�s� � F̂
1 2 s
1 1 s

� �
� cT�s1 2 A�21b 1 d �34�

with A, b, c, andd being determined by thehi. The major
advantage of Eq. (34) lies in its time-domain realization. Let
us identify ~f I �r ; s� with ~F�s� which corresponds to the
choice of coefficients in Eq. (24) with̀ � 21 and theBi

in Eq. (30) multiplied by g=�2p�: Consider ~F I�r ; s� �
~f I�r ; s� ~z 0�s�; which mimics the Laplace transform of Eq.

(16). Then,

F I�r ; t� �
Zt

0
fI�r ; t 2 t�z0�t� dt � cTx�t�1 dz0�t�;

_x � Ax 1 bz0�t�;
�35�

which approximates the convolution in Eq. (16) for fixedr .
The validity of this can be established by taking Laplace
transforms and recovering~F I�r ; s� � ~F�s� ~z 0�s� with ~F�s� as
given by Eq. (34). Note thatfI�r ; t� �L21{ ~F�s�} is the
impulse response, i.e.F I�r ; t� � fI�r ; t� when z0�t� � d�t�
which can also be obtained by solving_x � Ax �d0�t� � 0�
with x�0� � b leading to

fI�r ; t� � cT exp�At�b·H�t�: �36�
Here, we have takend� 0 since d � lims!∞ ~F�s� which
should vanish when one considers Eq. (13) asv! ∞:

5.1. State-space representation of the Froude–Krylov force

The exciting force acting on the body in modea
(Froude–Krylov part) is

fIa�t� � r
2

2t

Z
S
F I�r ; t�na dS

and its Laplace transform satisfies

fIa�s� � rs
Z

S

~f I�r ; s�na dS
� �

~z 0�s�: �37�

Describing ~f I �r ; s� according to Eqs. (33) and (34) yields

r
Z

S

~f I�r ; s�na�r � dS� lim
N!∞

r
Z

S

XN
i�0

hi�r � 1 2 s
1 1 s

� �i

na�r � dS

� lim
N!∞

XN
i�1

r
Z

s
hi�r �na�r � dS

� �
1 2 s
1 1 s

� �i

� lim
N!∞

XN
i�0

Hiz
i
; Hi � r

Z
S

hi�r �na�r � dS; (38)

for the causal approximation tos21 ~HIa�s�:
As suggested in Ref. [12], the spatial integration in Eq.

(38) can be evaluated using Gauss–Legendre quadrature
where the parameters {hi} are evaluated for a discrete set
of points onS, r � r j ; and the integration performed as a
weighted sum of thehi evaluated at these points thus yield-

ing the effective parameters {Hi}. Effective matrices
(Ae,be,ce) corresponding to the operations alluded to in Eq.
(34) can then be constructed. With this representation in
hand, the Froude–Krylov force corresponding to the inverse
Laplace transform of Eq. (37) is

fIa�t� � _y; y� cT
ex;

_x � Aex 1 bez0�t� � cT
eAex�t�1 cT

ebez0�t�
�39�

which can be identified with the form in Eqs. (18) and (19) if

AI � Ae; BI � be; CI � cT
eAe; DI � cT

ebe:

�40�
Using the final value theorem for Laplace transforms in
conjunction with Eq. (34) for~f I�r ; s� we have

lim
t!0

fI�r ; t� � lim
s!∞ s ~f I�r ; s� � lim

s!∞ scT�s1 2 A�21b � cTb:

Note that2fI =2t calculated using Eq. (36) will contain the
Dirac delta function if cTb ± 0: For this reason,CI

discussed at the end of Section 4 is selected to beCI �
2gB0um�0=�2p� � 2g=4 so that for r [ F (i.e. m � 0),
cTb � fI�r ;0� � 0: A physical interpretation of this value
is possible. Integrating Eq. (14) and takingF I�r ; t� � 0; t ,
0; gives

F I�r ; 0� � 2g
Z0

2 ∞
zI�x; y; t� dt; r [ F: �41�

In adopting a causal approximation forF I�r ; t�; we argue
that the entire function should be shifted so thatF I�r ; 0� �
0; r [ F: From Eq. (41), this is consistent with neglecting
the past history of the incident waves. However, physically,
having destroyed the past history of the waves (and intro-
duced a step functionH(t) intoF I (r ,t)), we have incurred an
initial impulsive distribution of pressure on the free surface
�2r2F I�0; t�=2t� which should also be removed. In
summary, by resettingB0 � tan21� ���������1 2 m2

p
=m�2 p=2; we

obtainF I�r ; 0� � fI�r ; 0� � 0 on the free surface�r ± 0�
and hence2fI =2t does not containd (t) for z0�t� � d�t�:

6. Numerical examples

In this section, the position is selected according to

rT � a
���������
1 2 m2

q
0 2m

� �T

; m � 2z=
���������
x2 1 z2

p
: �42�

We are initially interested in comparing the exact
frequency-domain description for the potential function in
Eq. (13) with that generated by the rational approximation
~F� jv̂� � cT� jv̂1 2 A�21b �v̂ � ���

ka
p � in Eq. (34). Here, the

value ofn� 15 and the requirement that~f I�r ; s� be analytic
for Re{s} . 0 is equivalent toA having eigenvalues with
negative real parts. The approach for removing extraneous
eigenvalues with positive real parts is discussed in Ref. [12].
The value ofn reflects this removal. On the basis of Eq. (13),
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Fig. 1. Rational approximation of~f I vs. exact solution�m � 0:1; CI � 0�:
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Fig. 2. Rational approximation of~f I vs. exact solution�m � 0:1; CI � 2g=4�:
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Fig. 3. Rational approximation of~f I vs. exact solution�m � 0:5; CI � 2g=4�:
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Fig. 4. Rational approximation of~f I vs. exact solution�m � 0:01; CI � 2g=4�:
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Fig. 5. Rational approximation of~f I vs. exact solution�m � 0:9; CI � 2g=4�:
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one expects~F�s� to have a pole at the origin and this
consistently manifested itself in the rational approximation
by an eigenvalue ofA nears� 21026

:

The corresponding time-domain functionsf I(r ,t̂ ) (with
t̂ � t

����
g=a
p � are generated according to Eq. (15) using the

trapezoidal rule and the causal approximation using Eq.
(36). It is the time derivative of the incident potential that
is used to derive the Froude–Krylov force and the height of
the incident wave on the free surface according to Eq. (14).
For this reason, we look at the solution for2g212F I�r ; t̂ �=2t̂
corresponding toz0�t̂ � � �sin t̂ �H�t̂ �: The exact solution is
calculated by differentiating Eq. (16) to get

2F I�r ; t̂ �
2t̂

�
Z∞

0

2fI�r ; t̂ 2 t�
2t̂

z0�t� dt

For the rational approximation, the corresponding time
function is obtained from the derivative of Eq. (35),
2F I�t̂ �=2t̂ � cTAx�t̂ �1 cTbd0�t̂ � wherex�t̂ � was obtained
by integrating Eq. (35) using a fourth-order Runge–Kutta
technique with a step-size ofDt̂ � 0:05:

The results of these calculations are presented in Fig. 1
for m � 0.1, where initiallyCI � 0: The causal portions of
the time-domain potential exhibit excellent agreement and
in the frequency domain, the discrepancy can be largely
attributed to the Fourier transform of the missing anticausal
part. This is approximately given byg21fI�r ; t̂ � �
�1=2�H�2t̂ � or �1=2�j=v̂ in the frequency domain (in any
event, the time-domain behavior ast ! ^∞ dictates that
in the frequency domain ass! 0�: The convolution which

illustrates the evolution of the pressure distribution (within a
factor ofrg) at m � 0.1 clearly illustrates the noncausality
of the ‘exact’ case and the approximation clearly possesses a
delay.

The situation whenCI � 2g=4 is depicted in Fig. 2. The
resulting bias in the time-domain eliminates much of the
discontinuity inf I(r ,0) (all of it is eliminated on the free
surface, i.e. asm! 0; see Fig. 3). The resulting addition of
2jCI =v̂ in the frequency domain greatly improves the accu-
racy of the imaginary part of the causal approximation. The
delay in the convolution with the unit frequency sinusoid is
largely mitigated and in the steady-state there is fairly good
agreement. The corresponding graphs form � 0.01,
m � 0.5, andm � 0.9 are shown in Figs. 3–5. Note that
on the free surface�m! 0 which is approximated in Fig.
3), the convolution in the lower right corner corresponds to
the time evolution of the free surface elevation correspond-
ing to an impressed sinusoid at the origin. A slight delay in
its buildup is in evidence as well as a small steady-state
amplitude error. The latter is in accord with the frequency
domain discrepancy atka� 1; both effects are produced by
causalization of the approximation. Asm! 1; the accuracy
of the rational approximation decreases in the frequency
domain but the effective contribution to the Froude–Krylov
force also decreases.

The discrepancy between the two sets of curves in Figs.
2–5 can be attributed to three factors: (i) the shift byCI in
the time domain; (ii) truncating the anticausal part off I (i.e.
setting fI�r ; t� � 0; t , 0; (iii) truncating the order of
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Fig. 7. Rational approximation of the Froude–Krylov (heave) force for a circular cylinder�HIa � �rpag=2�ĤIa�:



the rational approximation and hence the order of the state-
space system atn states. It has already been observed that
the effect of (i) largely offsets that of (ii) when considering
the imaginary part in the frequency domain. In order to
assess (iii) alone as a function ofm , we compare the causal
part of

g21Df�r ; t̂� � g21�f�r ; t̂�uapprox2 f�r ; t̂�uexact�
where theCI factor is neglected in calculating the difference.
The behavior of this quantity is shown in Fig. 6 for various
values ofm . The accuracy of the rational approximation in
the time domain (for fixedn) improves asm ! 1:

In determining the Froude–Krylov force it is a weighted
spatial superposition of2fI�r ; t�=2t that is required or
jv ~f I�r ; jv� in the frequency domain. This tends to mitigate
low-frequency errors and accentuate higher frequency ones.
On this basis, one expects the methodology to perform
better at larger draughts which is consistent with the results
of Ref. [12] for the radiation problem.

The determination of the transient exciting force on a
circular cylinder of radiusa and drafta is considered with
its center located atx� 6a, z� 0 Eq. (15). The ‘exact’
calculation in the frequency domain uses a weighted version
of Eq. (13) in conjunction with Eq. (17). The spatial inte-
grals are performed using a 48-point Gauss–Legendre rule.
The time-domain solutions were obtained by calculating a
numerical inverse Fourier transform in Eq. (17) and
performing the convolution in Eq. (21) using the trapezoidal
rule. The rational approximations were obtained by apply-
ing the 48-point rule to Eq. (38). The convolution with the
sinusoidal wave height was accomplished through numeri-
cal integration of the effective system in Eqs. (18) and (19).
The results are shown in Fig. 7. The rational approximation
captures the small-time behavior of the causal part of the
impulse response quite well. The convolution exhibits an
initial transient error relative to the ‘exact’ noncausal solu-
tion but in the steady-state, the increment is quite accurate.
It is interesting to note that the noncausal nature of the exact
solution persists in spite of the shifting of the wave-height
datum six cylinder radii up-wave of the body center.

7. The transient Haskind relations

The transient form of the Haskind Relations [11] states
that

fDa�t� � r
Zt

2 ∞

Z
S

"
2FI

2t
�r ; t� 2fRa

2n
�r ; t 2 t�

2
22F I

2n2t
�r ; t�fRa�r ; t 2 t�

#
dSdt �43�

wherefRa , from Eq. (7), is the radiation potential due to an
impulsive velocity motion in modea . This can be inter-
preted as the inverse Fourier transform of the steady-state

relations which are given by

~f Da� jv� �
(

jvr
Z

S

"
~f I�r ; jv� 2

~fRa

2n
�r ; jv�

2
2 ~f I

2n
�r ; jv� ~fRa�r ; jv�

#
dS

)
~z 0� jv�: �44�

Making use of the boundary condition in Eq. (7), allows us
to identify the first term in Eq. (43) with Eq. (8) and the first
term in Eq. (44) with Eq. (17). Using the remaining terms,
the scattered portion of the diffraction force can be written
as

~f Sa � ~HSa� jv� ~z 0;

~HSa� jv� �W 2jvr
Z

S

2 ~f I

2n
~fRa

 !
dS:

�45�

We seek to realize the mapping fromz0(t) to fSa (t) along the
lines of Eqs. (18) and (19).

Note that 2fI�r ; t�=2n� nT�r �7f I where 2fI =2x and
2fI =2z can be determined as solutions of Eq. (23) with` �
0: By weighting the initial conditions in Table 1 using the
components of the normal, it is possible to realize2 ~f I =2n in
the form

2f̂ I

2n
�r ; z� �

X∞
i�0

hIi�r �zi
:

Assuming a similar series for̂fRa�r ; z� can be developed
based on the results in Ref. [12] (with coefficientshRi), the
product in the integrand of Eq. (45) can be written as

2
2 ~f I

2n
~fRa�r ; s� � 2

X∞
i�0

hIi�r �zi

" # X∞
i�0

hRi�r �zi

" #
z��s21�=�s11�

�
X∞
i�0

HRI;i
s2 1
s1 1

� �i

where theHRI,i are determined by multiplying the two series.
This can be realized in the form of Eq. (34) and the output
fSa (t) can then be determined in a similar manner tofIa (t) in
Eqs. (39) and (40) where the effective matrices (Ae, be, ce)
are chosen so that

cT
e�s1 2 A�21be �

X∞
i�0

r
Z

S
HRI;i�r � dS

s2 1
s1 1

� �i

:

Another possibility is to realize that Eq. (44) also applies
when the integral is performed around a bounding surface,
S∞, which encloses the body (after multiplication by21)
which follows from applying Green’s theorem. By choosing
S∞ to be a cylinder of large radius, an asymptotic expression
for ~fRa can be used. In 2D problems with left–right
symmetric motions, ~fRa / ~G�r ;0; jv� in Eq. (26) and
hence the coefficientshRi can be determined using the tech-
niques of Section 5.
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8. Concluding remarks

This paper has been motivated by the requirement of
modeling the transient relationship between an incident
sea state and the exciting forces on a floating body. It has
been observed that this mapping is noncausal since the
forces acting the body arise before the datum wave height
is “turned on.” Since this is problematic in a simulation
environment, we have endeavored to develop an (optimal)
causal approximation.

Although an initial transient error exists relative to the
noncausal solution, the steady-state accuracy for sufficiently
low frequencies is quite good. Since the diffraction mapping
is linear time-invariant, it can be realized as a nonhomo-
geneous system of first-order constant-coefficient ODEs
with the wave height datum as the forcing function. These
are highly amenable to computer implementation of the
simulation problem. The ODEs were developed using an
analytical approach to constructing rational approximations
for the diffraction mapping in the frequency domain. This
was accomplished using the fourth-order time-varying ODE
which the 2D Green’s functions relative to an impulsive
source and an impulsive wave height were shown to satisfy.

The realization of the diffraction mapping can be readily
combined with similar models for the floating body
dynamics (forces to body motion mapping) and the radiation
impedance (body velocities to radiation forces mapping).
Future work will address the combination of these elements
using the variational principle described in Ref. [12] in
conjunction with the finite element method for capturing
complex ship geometries in two dimensions. It is anticipated
that this can form the basis for a computationally efficient
“transient strip theory.”

Appendix A. Proof of Lemma

Since many steps in the proof are common to that in Ref.
[13] for the 3D source function, we emphasize the differ-
ences. In the original proof, a key observation was that the
Bessel function of zeroth order could be expressed as
J0�z� � exp�2jz�M�1=2;1; 2jz� where M is the confluent
hypergeometric function (or Kummer’s function) [16].
The analogous result used here is that

cosz� zexp� jz�M�1;2;22jz�: �46�

Only the case with cos
���������
1 2 m2

p
l sin

��
l
p

t in the integrand is
treated. The other three possibilities can be handled simi-
larly since sinz� zexp� jz�M�1;2;22jz� also.

Begin by noting that Eq. (22) implies

22kF

2t2k � �21�k
Z∞

0
l`1ke2ml cos

���������
1 2 m2

q
l sin

��
l
p

t dl;

k � 0;1;2;…;

and making the change of variablep� lt2 gives

22kF

2t2k �
�21�k

t2�`1k11�
Z∞

0
e2pm=t2

cos p
���������
1 2 m2

q
=t2

� �
p`1k sin

��
p
p

dp:

Introducing the new variableu� 1=t2 leads to

F �
Z∞

0
u`11e2pum cos pu

���������
1 2 m2

q� �
p` sin

��
p
p

dp:

Using the relationship in Eq. (46) and defining

a�m� �
���������
1 2 m2

q
;

H`�p;m;u� � u`12 exp�2pu�m 1 ja�u���
�M��1; 2;22jpua�m�� � u2Ae2f �u�M�a; b; h�u��

�47�
whereA� 2�` 1 2�; f �u� � up�m 1 ja�m��; a� 1; b� 1;
andh�u� � 22jupa�m�; leads to

F � a�m�
Z∞

0
H`�p;m; u�p`11 sin

��
p
p

dp; �48�

�21�kt2k 2
2kF

2t2k � a�m�
Z∞

0
H`�p;m;u�p`1k11sin

��
p
p

dp;

k � 1;2;3;…:

�49�

The functionH defined this way is known to satisfy the
general confluent equation (see Eq. (3.11) in [13] or [25,
13.1.35, pp. 505] in [16]) which in the present case takes the
form

22H`

2u2 2 2�` 1 1�2
2mpu

u

� �
2H`

2u

1 p2 2
2pm�` 1 1�

u
1

`2 1 3` 1 2
u2 �H` � 0:

"
Letting

u� 1
t2 ;

2

2u
� 2

1
2
t3 2

2t
;

22

2u2 �
3
4
t5 2

2t
1

1
4
t6 22

2t2

this becomes

1
4
t6 2

2H`

2t2 1 ` 1
7
4

� �
t5 2H`

2t
1 �` 1 1��` 1 2�t4H`

� pmt3 2H`

2t
2 p2H` 1 2pm�` 1 1�t2H`: (50)

Now multiply both sides bya�m�p`11 sin
��
p
p

and integrate
with respect top from 0 to∞. Using Eqs. (48) and (49), we
note the appearance ofF and its derivatives on the left-hand
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side of Eq. (50) so that it becomes:

1
4
t6 2

2F

2t2 1 ` 1
7
4

� �
t5 2F

2t
1 �` 1 1��` 1 2�t4F

� mt3 2

2t

Z∞

0
a�m�H`�p;m;u�p`12 sin

��
p
p

dp

2
Z∞

0
a�m�H`�p;m;u�p`13 sin

��
p
p

dp

12mt2�` 1 1�
Z∞

0
a�m�H`�p;m; u�p`12 sin

��
p
p

dp:

The integrals on the right-hand side are available from Eq.
(49) which leads to Eq. (23) after simplification.A
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