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Abstract

The frequency-domain description of the potential function corresponding to a sinusoidal progressing wave can form the basis for
describing an arbitrary incident wave field in linearized free-surface hydrodynamics. Fourier techniques make it possible to relate the
incident sea state to the resulting hydrodynamic forces on a floating body. This paper develops a rational description in the frequency
domain for the corresponding dynamical system which can then be realized in the time domain as a system of constant-coefficient differential
equations driven by incident wave height at a datum and whose output is the Froude—Krylov force. This is made possible by showing that the
time-domain version of the potential for a sinusoidal progressing wave satisfies a fourth-order time-varying ordinary differential equation
(ODE) analogous to that satisfied by the three-dimensional time-domain source function. Laplace transformation of this ODE followed by
bilinear transformation supplies the analytical basis for generating the rational approximation. Various causality issues associated with the
diffraction forces are neatly handled by the approach presented@e2800 Elsevier Science Ltd. All rights reserved.

Keywords Water wave diffraction; Froude—Krylov forces; Transient hydrodynamics

1. Introduction time-invariant (LTI) system is equivalent to the complex
amplitude of steady-state sinusoidal responses. Hence, in
When one considers the small motions of a floating body principle, transient solutions for the radiation and diffraction
in the presence of small amplitude incident waves, the forces can be obtained using the inverse Fourier transform
hydrodynamic pressure forces can be taken to arise fromin conjunction with the solution of the corresponding
three sources: the incident wave field, the scattered field steady-state time-harmonic problem at many frequencies.
produced by the presence of the body (collectively referred The connection between the time- and frequency-domain
to as the diffraction field), and the motion of the body (radia- formulations of linear water wave problems was noted by
tion field). For purposes of modeling the floating body, itis Cummins [1] and Wehausen [2].
natural to consider the dynamical systems which produce Finite-dimensional approximations of LTI systems can
these forces under the action of appropriate inputs. For thealso be written in state-space form which is no more than
radiation forces, the inputs may be taken as the (general-a nonhomogeneous system of first-order constant-coefficient
ized) body velocities whereas for the diffraction problem it ordinary differential equations (ODEs). The goal of the
is natural to consider the amplitude of the free-surface present paper is to obtain a state-space representation for
elevation at some reference location. In the sequel, thethe diffraction mapping. Yu and Falnes [3] were motivated
corresponding dynamical systems are referred to as theby the same goal and used curve-fitting techniques that ulti-
radiation (mapping) impedance and the diffraction mapping. mately required a description for the complex force ampli-
For the linearized version of what is ultimately a time- tudes at many frequencies. They ‘fitted’ the state-space
invariant problem, these dynamical systems can be realizedsystem using time-domain impulse response data obtained
by time-invariant convolution integrals which can be inter- using numerical inverse Fourier transforms of the
preted as inverse Fourier transforms of the product of the frequency-domain information.
Fourier transforms of the impulse response and the corre- Falnes [4] has pointed out that the diffraction mapping is
sponding input. From linear system theory, it is known that ultimately noncausal (i.e. the diffraction forces start before
the Fourier transform of the impulse response of a linear the datum wave height ‘begins’). Yu and Falnes demon-
strate that the diffraction mapping can be made approxi-
ml_416_667_7704; faxs 1-416-667-7799. mately causal by shifting the spatial datum for the
E-mail addresscjd@sdr.utias.utoronto.ca (C.J. Damaren). incident field up-wave of the body or by time shifting the
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impulse response, effectively delaying the force output rela- treatment for the radiation problem developed in Ref.
tive to the wave input. Damaren [5] also realized the diffrac- [12]. It is the explicit nature of the model which is most
tion mapping by a state-space system but the fitting wasimportant and makes it suitable for applications such as
conducted in the frequency domain using appropriate control system design.

rational functions. The key idea was the recognition that As mentioned above, the diffraction mapping is noncau-
linear, constant-coefficient ODEs in the time domain corre- sal which in the time domain manifests itself as an impulse
spond to rational dependence on the frequency variable inresponse that is nonzero for negative values of time and in
the frequency domain. Causal approximations were the frequency domain by poles in the right-half of the
obtained by forcing the rational descriptions to have poles complex plane. In physical terms, a wave height time
in the left-half of the complex plane. history that begins at = 0 generates exciting forces that

Many authors have been concerned with the transient begin before = 0; this is obviously problematic in a simu-

motion of floating bodies but the majority of this work has
treated the radiation problem. We mention Yeung [6],
Newman [7], Beck and Liapis [8], and Pot and Jami [9],
all of whom used the time-domain source function in
conjunction with the transient version of a Fredholm inte-
gral equation. Analogous calculations for the diffraction
problem (for bodies with forward speed) have been
presented by Beck [10] and Korsmeyer and Bingham [11].
A rational approximation for the three-dimensional (3D)
(frequency-domain) Green’'s function was obtained by

lation environment. Causal approximations can be obtained
in a number of ways. Here, it is argued that truncation of the
anticausal part of the potential function corresponding to an
impulsive wave height in the time domain is a reasonable
way to proceed and is easily accomplished using the meth-
odology presented here. In the (complex) frequency
domain, this corresponds to neglecting those contributions
to a partial fraction expansion whose poles lie in the right-

half of the complex plane. It is an optimal causal approx-

imation to the incident wave potential function in the sense

Damaren [12] and used to obtain a rational description for that it minimizes the energy of the potential error (the differ-
the radiation impedance. This was obtained using the ence between the true potential and its causal approxima-
fourth-order time-varying ODE which Qbeent [13] has tion) corresponding to an impulsive change in wave height
shown is satisfied by the time-domain source function. at the datum. Our primary interest here is the transient
These calculations are analytical in character and permit adescription of the Froude—Krylov force given the incident
state-space description of the transient radiation problemwave. However, the scattering component of the total
without solving the frequency-domain problem at several diffraction force will also be described using the transient
frequencies. This paper presents the corresponding treatform of the Haskind relations.

ment of the diffraction problem.

The main result that is presented and exploited here is the
fourth-order ODE satisfied by a family of two-dimensional
(2D) “source” functions. These include the 2D (time-
domain) Green’s function and the time-domain potential
corresponding to an impulsive change in free-surface eleva-
tion. The Fourier transform of the latter is the usual potential
function attributed to a sinusoidal plane progressive wave.
With this ODE in hand, the analytical techniques presented
by Damaren [12] are used to develop rational approxima-
tions for the frequency-domain quantities. Multiplication of
these “source” functions by an “input” function in the
frequency domain yields convolution operators in the time N
domain whose action can be obtained as the “output” of a W(F, ) = > T'a(NUa(®)
system of linear constant-coefficient ODEs corresponding to a=1
the rational approximation. wherel’, are shape functions which include the six rigid-

The main application treated here is the time-domain body motions.
calculation of the transient Froude—Krylov force. In this The wetted surface of is denoted byS andn(r) is the
case, the “input” referred to above is the transient incident outward normal t&. If p(r,t) is the fluid pressure, then the
wave height at a suitable datum and the “output” is the fluid pressure force in “mode# is given by
generalized exciting (Froude—Krylov) force in a general
degree of freedom. The computational load required to f,(t) = —J pn, dS
generate the state-space model relating the two is on the S
order of that required to solve the frequency-domain Given the assumptions that the fluid medium is incompres-
problem at one frequency. Furthermore, being a standardsible, of constant density, inviscid, and irrotational, the fluid
state-space model, it is readily combined with structural mechanics can be described by the velocity potedtial t).
and rigid-body motion equations and the corresponding If the ocean is modeled as infinitely deep and of infinite

2. The water wave diffraction problem

Consider the small motions of a floating bodin the
presence of an incoming wave field. The free surface eleva-
tion in the absence of the body is described liy, t) where
r =[xy Z'. Thez-axis is vertically upwards and the origin
of the coordinate system lies in the undisturbed free surface
and corresponds to a datum for describing the incident field:
Lo(h) £ £(0,t). The motions of the body are described by
w(r,t) = [wy w, wa]" and

D

n,r)2n'r,. )
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extent, the velocity potential satisfies The velocity potential corresponding &g is given by
2 o0
) D 1 IR O
V2o=0 rev, “v-—¢' reF D1, 1) = —j (1, i o(j0)e do (12
ot 0z 271' — 0
b 3 where
lim ‘Z—Z -0, ,
zZ—— 00 ~ ik’
1. jo) = D ge i (13)
whereF = {z= 0\%#} denotes the free surface agds the ®
acceleration due to gravity. with

The standard decomposition &f is used here
k=w%g  k =ksgnw).

N
P=& + b5+ D, Pr= Z PRa * Ug A The potential in Eq. (13) when multiplied b}'/”bis recog-

o=t nized as that corresponding to a plane progressing wave in
where @, dg, and dy are respectively, the incident, scat- the positivex-direction with time dependence of this form;
tered, and radiated fields, and Y denotes temporal convo-  hence, Eq. (12) represents a superposition of such waves. It
lution. Each function is a solution of the boundary value is readily verified that
problem in Eqg. (3) and

1 3@| 1 o = . —ik/x jeot
g|(x’y’t):__— = 5 gO(JQ))e ! éw dw
@(r,t): a—g rerF, (5 g ot [=0 27 )-w
0z ot (14)
ddg _ which yields Eq. (11) upon setting= 0.
on r.y= ﬁ(r’t)’ res ©) Taking the inverse Fourier transform of Eq. (13) yields
the required transient form:
a@Ra H 00
(")I’] (r,t) = na(r)a(t), r e S (7) ¢|(I’,t) — ﬁ lekZ*jkIX+jwt dw

w
In addition, the scattered and radiated fields satisfy certain

2w ) -
regularity conditions as £ /x2 + y2 — oo. _ Re{g Jw 1 dikoctjot dw}
The radiation problem has been treated in the spirit of this m™Jo w
paper elsewhere. Therefore, our attention is restricted to the
diffraction field which is identified with®dp & &, + P,
The linearized form of the Bernoulli relation implies that
the corresponding hydrodynamical contribution to Eq. (2) is

9 J L d2 sintkx = wt) do
T 0 W

©1 .
-9 J = €% sinkx coswt dw
m™Jo o

given by
foa() = fia(t) + fsu (D), ®) g (1,
- = J —€e“ coskx sin wt dw

I, TJo @

fla(t) = PJ Tna ds (9) g © 1
S = o J Eekz(sin kx cos/kgt — coskx sinykgt) dk.
0

oD
fald =p | Tsna ds (10) (15)

_ _ _ o ) Physically,¢, corresponds to the potential resulting from an
wherep is the fluid density. The contributiofy,(t) is the  impulsive change in the free surface elevation at the origin,
Froude—Krylov force. _ _ Lt = &(t). As mentioned in the introduction (r,t) % 0

The primary goal of the paper is to obtain an explicit for t < 0 and hence is noncausal. In other words, the wave
representation for the dynamical system relatifyf) to field required to produce the impulsive wave at the origin

fio(t). To this end, the Laplace transform &fis defined by myst start before then. This is an artifact of a description
- g which is restricted to waves propagating in a single
LU0} = o9 = jo e, Res >0, Sreetion
i ) ) Given the form of Eq. (12), the general expression for the
a notation used throughout. The corresponding Fourier time-domain potential is
transform will also be used and is designatéd {(t)} = .
{o(jw), and in the absence of arguments, ggythe Fourier D)=+ L= J' H(r,t — DE(7) dr (16)
transform is intended. The inverse Fourier transform is — o0
i Y S (R which can be substituted into Eq. (9) to yield the Froude—
S =7 {lo(jo)} = o J, o Loljwe™ dw. a1 Krylov force. Taking Fourier transforms in Eq. (9) gives the
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frequency-domain description for these exciting forces:

flo=Auiolo  Aulio) 2jop | Ginods @7
and a similar construction appliesftg,. The goal here is a
formulation in the frequency domain which vyields an
approximation toH,, exhibiting rational dependence on
frequency. This allows the diffraction mapping to be
realized as a linear system of constant-coefficient differen-
tial equations forced by the reference wave motjgi). In

our previous work [5], this was accomplished by fitting
values ofH,,(jw) with rational functions ofs that were
analytic in the right half-plane. This required solving the
frequency-domain boundary value problem at many
frequencies for each mode..

In this paper, the rational description will be constructed
analytically with causality as an essential feature of the
development. Sincef,(t) = H,, * {o(t) must be linear
time-invariant, a finite-dimensional approximation must be
of the state-space form

X)) = Ax + B (18

fio() = Cix; + D1 4o(D) (19

where x(t) is the n-dimensional state vector and
{A,,B,,C,,D,} are constant matrices of appropriate dimen-
sion. Taking Laplace transforms in to Eqgs. (18) and (19)
yields

fla(s) = (20)

By obtainingH, ,(s) in this form, the transient description in
Egs. (18) and (19) will follow immediately.

[Ci(s1— A) B, + Dy1o(9).

3. Causal approximation

Analogous to Eq. (16) for the incident potential, Eq. (17)
yields the convolution

= |

or in the frequency domaify,(s) = H,,(9{o(S) where, in
this section, in-general(*)(s) denotes the double-sided
Laplace transform. Let us define the following spaces of
time-domain functions:

Hio(t — Dp(7) dr (21

Lo(—00,00) = {h(t)| J’°° h2(t) dt < oo},
Z5[0,00) = {h+<t>| J: 2 (t) ct < oo},

0
Loy(=,0] = {h_(t)q h2 (t) dt < oo},

Important for rigorously defining the process of causal
approximation are the Hardy spaceg, are the functions
h(s) which are analytic inRgs} > 0 and satisfy the
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condition
sup Ih(o + ja))|2dw< 00,
o>0J —

A5 are the function§i(s) which are analytic irRgs} < 0
and satisfy the condition

(o)

sup |ﬁ(0'+jw)|2dw< 00,

a<0

The space?,(—jo, joo) are those functionB(s) for which

\/i J IA(jo)|* de < oo
21T )

and &, (—joo, joo) are those functionB(s) for which

IAll, =

Il = suplh(je)| < oo.
wER

We have the following decompositions#’,(—oo, 00) =
L5(—00,0] © Z,[0,00) and Lp(—joo, joo) = #', D #3.
The functions in#’, are simply the Laplace transforms of
the time signals ih.,[0, c0) and those in#y are the Laplace
transforms of the time signals in,(—oo, Q].

Lastly, # ., contains the functionls(s) which are analytic
and bounded iRgs) > 0. It consists of the Laplace trans-
forms of those function$(t) which map #,[0, ) onto
Z,[0,00] via the convolution operation or, alternatively,
map 2, onto J#, via multiplication. They correspond to
causal systems and necessarily satigty =0, t < 0. %>
may be identified with the Laplace transforms of tho&g
with finite energy which vanish fdr< 0. The rational func-
tionsh(s) € #, for which lims_.,h(s) = 0 are identical to
the rational functions in#,.

Given a systemH,,(s) € L (—jo, jo0) N Lo(—joo,
joo), there are two possibilities for defining a causal approx-
imation: (i) findh(s) € #,, to minimize|H, (S — A(9)|o»
or (i) find h(s) € #, to minimize ||H, (s — h(s)|,. The
first of these is the Nehari problem for which the optimal
approximation is relatively difficult to determine and typi-
cally satisfies ling_..,h(s) # 0 althoughH,,(s) — 0 ass—

0. On the other hand, ifH,(t) =h,(t)+ h_(t) with

h, (t) € £5[0,0) andh_(t) € ¥»(—0,0], then the opti-
mal # ,-approximation i(s) = h, (s) = £{h. (1)}, which
effectively minimizes the energy of the impulse
response error. It is readily computed by truncating
the anticausal parth_(t)] of H,,(t) and can be accom-
plished by multiplying the right-hand side of Eq. (15)
by H(t), the Heaviside step function, and using its trans-
form in Eq. (17).

4. An ODE for the impulsive wave height potential

In this section, Clment's treatment of the 3D source
function is extended to certain cases of interest in the 2D
case. In particular, the 2D source function and the potential
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Table 1

Initial conditions for the fourth-order ODE

F([J,,‘e, T) *e BO Bl Bz Bg
NGV (R RS -3 0 n 0 1-2p?

[r3ga%iox i 0 —2ua/1— 2 0 —2J1— 121 - 4p?)

\r3Igogiaz i 0 u?-1 0 2u(3 — 4u?)

(2m/g) e (r, t) -1 tan *[y1 — p?/u) —Jr@d+ w2 —J1— u? —Jm@+ w21 — 2w)/2

(27T 1/Q)d /X 0 uw VA= W21 + 2uw)/2 1-2u2 VORI — w[4u® — 2u? — 3u + 1]
(2mr1/Q)ddy /92 0 1— u2 JTA T W21 — 2u)/2 —2paf1— 2 JOTBAT + w4u® — 2u? — 3 — 1]

=2 E=[£0"(=0forg), 1, =yJx— 92+ @+ Y% r=tJofry, p= -2+ O/,

corresponding to an impulsive wave height can be treated.[14] can be written as
The basic result is covered by the following lemma: -
7 SN —A e _ 1 K(z+{)
4(r,&jow) =2 log o 2] ——¢€
1

Lemma. The functions o k=K
X cogk(X — &] dx (26)
VI w2 | [ cos/An)
F(M,E,T)ZJO)\G i da whererg—(x—é) +(z—9? andri=(x— 9%+ (z+
sin(y/1 — w2r) | LSINVAT) »?. The integration in Eq. (26) passes above the pole at
22 k =k in order to satisfy the radiation condition. This
describes the complex amplitude of the potential field aris-
satisfy the ordinary differential equation ing from an oscillating source with frequeney= /kg at
4F 3F = =€E=[&n GT-
Ag—r + A37-6— + (A + A7 )_ + Alq-a— + AF The transient form of this function is obtained using the
o I IT inverse Fourier transform:
=0 23 gren= Iog( )B(I) — 2%, £ 1),
where the coefficients are given by ar, £:1) _J e+ cod (x — @]\/75“,[\/—) dk H(b).
A4 = 1’ A3 =M, A2 = 2(/8 + Z)M, Az = %, (27)
=L+ 1, A= + D& + 2). (24) Here, &(t) is the Dirac delta function ane(t) is the Heavi-

side step function. This describes the time-varying potential
field arising from a source with strengét) atr = &.

The proof is given in Appendix A and extends the result of By defining

Clement which applied to a function of the form in Eq. (22)

but the trigonomentric functions o@fl — 2A) and =Kl w= _(Z+§), r= EL (28)
sin(y/1 — u?)) were replaced with the Bessel functions r M1

J,/1— 2A). In the sequel, the boundary conditions

required to completely specifij(u, £,t) are denoted by we haved(r, & 7y1./g) = VOnF(u, £, » with £ = —

assuming that the c();él — w2)) sin(+/A7) combination is
selected in Eq. (22). The corresponding initial conditions for
F and its first three temporal derivatives can be determined

(25 by evaluating Eq. (22) and its derivatives at=0 and
£.0)= recognizing that the ensuing integrals have the form of
Laplace transforms (im). Hence, we obtain

JoF
F(M,’e, O) = BOa E(M"e’o) = Bl’

9°F o°F
W(M,E’O) =By, ﬁ(ﬂ,

Ac=1  Ag=p A=dp A=,
4.1. The 2D Green'’s function
Al:%v AO:%’ BOZO’ Bl:/““
Before considering the impulsive wave height potential,

recall that the 2D Green’s function in the frequency domain B, =0, B;=1- ZMZ.
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Note that the nondimensionalized functidh depends
(spatially) only onw. The corresponding expressions for
the A, B; when

F = 4/r3/gaGlox
or
F =4/r3/goGloz

are also readily obtained. In this cage= 1/2 in Eq. (24)
and theB; are tabulated in Table 1.

4.2. The impulsive wave height potential

Referring to Eq. (15) and setting = +/x2 + 22(£ = 0)
with

m= -

A= Krl, N
r M

gives
D1 i1/Q) = S [Fa(w —1.7) — Fo(, 1, 7]

where F, corresponds to the sl — u2\) cogv/A7)
combination in Eq. (22) andF, to the cos
(/1 — u?)) sin(+/A7) combination. Sincé; andF, satisfy
the ODE in Eq. (23) with the same coefficients given by Eq.
(24) with€ = —1, so does £ F; — F,. The initial condi-
tions forF can be obtained by evaluating the integral(s) and
their time derivatives in Eq. (22) at= 0. Evaluating the
ensuing Laplace transforms gives

1—p? 1+
Boztanl[ivﬂ], B, = [T W
“ 2
8. = — [m(l+p) 1—2p
3 2 2

(29

(30

By = —1— 4

which must be multiplied byy/(2w) to recover¢,. The
values of the B; are also given in Table 1 for
(2wr1/g)d g /ox and (2mr1/Q)d ¢ /0zZ

Note that the ODE in Eq. (23) can be integrated forward
and backward in time from the initial conditionstat O to

C.J. Damaren / Applied Ocean Research 22 (2000) 267—-280

could be constructed for the Laplace transfoFs) =
L{F(7)} when F(7) is a solution of the time-varying
ODE in Eg. (23) (the argumentg., £) are dropped in this
section). We quickly review the procedure here since the
initial conditions in Eq. (25) are more general than those
used in Ref. [12]. Taking the Laplace transform of Eq. (23)
and using the initial conditions in Eq. (25) yields an ODE in
sfor F(s) :

YoSPE"(S) + (B3S® + B1F(S) + (st + S + ag)F(s)

=55 + 8,8 + 85+ & (31)
where
Y2 = Ay, Br=4A;, — A, Bz = —As,

aOZAO_A1+2A2’

Oy = Az - 3A3, oy = A4,

8o = (A, — Ag)B; + AyBs, 8, = A4B; + (A; — 2A5)B,,

8 =AB1,  83=AsBo.

A rational approximation oF (s) is required which is analy-
tic in R s} > 0 corresponding to the causal naturd=gf).

First, the problem is mapped into the compleplane
using the bilinear transformatioe= (1 — 2/(1 + 2 and
its inversez= (1 — s)/(1 + s) which isomorphically maps
the open right-half of thes-plane onto the open unit disk
|7 < 1. Writing F(2) = F[(1 — 2/(1 + 2)], and transform-
ing Eq. (31) yields

vo(z— D2z + DOF"(2) + 2[yy(z — D3z + 1)°
+Bs(z— 13z + 1) + Buz— Dz + D°IF' (2
+alayz— D + apz— DAz + 1? + apz+ DIF (2
= —4[83z— 13z + 1) — 8,(z— DAz + 1)

+81(z— D(z+ 1)° — 8oz + 1] (32)

produce the total solution. It will be used here to generate where(:)’ now refers to differentiation with respect tolf
the causal part through forward integration and correspondskF(s) € /., thenF(2) is a bounded analytic function in the

to multiplying ¢, in Eq. (15) by the Heaviside functid(t).
Since £ = —1, Ay in Eg. (23) vanishes and therefore
¢, (r,t) + C, is also a solution which can be accommodated
by adding the constai2w/g)C, to the initial conditiorBg in

Eq. (30). Since the physical quantities velocity and pressure

depend only on the space and time derivativesppfit
seems consistent tha# can be biased in this way. The
value assigned t€, will be discussed in the next section.

5. Rational approximation of the diffraction mapping

In Ref. [12], it was shown how rational approximations

unit disk [15] which permits a representation in terms of the
uniformly convergent power series

N
F(2) = lim > hZ, (33)
i=0
where the f} are known as the Hankel coefficients. Substi-
tuting this into Eq. (32) and matching powerszfields an
infinite system of linear equations for th ) which can be
truncated aN = 2n.
A rational approximation toF(s) can be obtained by
letting z=(1-9/(1+9s in Eg. (33). State-space
manipulations are presented by Damaren [12] which show
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how to write F(s) in the form ing the effective parametersH{}. Effective matrices
B /1—s (Ae,beCe) corresponding to the operations alluded to in Eq.
F(s) = F(lTs) =c'(s1-A)yb+d (39 (34) can then be constructed. With this representation in

hand, the Froude—Krylov force corresponding to the inverse
with A, b, ¢, andd being determined by this. The major Laplace transform of Eq. (37) is
advantage of Eq. (34) lies in its time-domain realization. Let ] T

us identify ¢,(r,s) with F(s) which corresponds to the fia® =Y, y=GeX

choice of coefficients in Eq. (24) witB = —1 and theB; - T T

in Eq. (30) multiplied by g/(2m). Consider ®,(r,5)— X~ AT Pedo() = CeAeX(D) + Cebelo(®)
Zm(;,S)r{]o(S), which mimics the Laplace transform of EQ.  which can be identified with the form in Egs. (18) and (19) if
16). Then,

(39

t A = A, Bj=b,, C, =clA, D, = clb.
D|(r, 1) = Jo G (r,t — Néy(ndr= CTX(t) + dgp(), (40
3
. (39 Using the final value theorem for Laplace transforms in
X = Ax + bfp(b), conjunction with Eq. (34) fokb,(r, s) we have
which approximates the convolution in Eq. (16) for fixed  |im ¢,(r,t) = lim sé,(r,s) = lim sc"(sL — A) b = c"h.
The validity of this can be established by taking Laplace 0 §—e0 S0

transforms and recovering, (r,s) = 'f(S)Zo_(ls) with F(s)as  Note thatag/at calculated using Eq. (36) will contain the
given by Eq. (34). Note thai(r,t) = ¥ {F(9)} is the Dirac delta function ifc'b # 0. For this reason,C,

impulse response, i.eP|(r,t) = ¢;(r,t) when {(t) = &(t) discussed at the end of Section 4 is selected tcChe
w_hlch can also bg obtained by solvirg= Ax (8y(t) = 0) —gByl,—o/(2m) = —g/4 so that forr € F (i.e. u=0),
with x(0) = b leading to c'b = ¢,(r,0) = 0. A physical interpretation of this value
& (r,1) = ¢ expAtb-H(t). (36) |Os Z(i)vses;ble. Integrating Eq. (14) and takidg(r,t) =0, t <
Here, we have taked =0 sinced = lim_,F(s) which ’ 0

should vanish when one considers Eq. (13pas . d,(r,0) = _gj L%y, t) dt, r € E. (41)

5.1. State-space representation of the Froude—Krylov force |, adopting a causal approximation fd(r, t), we argue

that the entire function should be shifted so tlatr, 0) =
0, r € F. From Eg. (41), this is consistent with neglecting
the past history of the incident waves. However, physically,
f ) =p 9 J ®,(r,Hn, dS having destroyed 'the p'.;tst history of the waves (and intro-
it )s duced a step functiod(t) into @, (r,t)), we have incurred an

initial impulsive distribution of pressure on the free surface
(—po®,(0,t)/at) which should also be removed. In
(9 = [psj .90, dS]ZO(S)- 37 summary, by resettin@, = tan [1— u/ul — w/2, we

s obtain &,(r,0) = ¢ (r,0) = 0 on the free surfacé # 0)
and hence)¢,/dt does not contaid (t) for {y(t) = 8(t).

The exciting force acting on the body in mode
(Froude—Krylov part) is

and its Laplace transform satisfies

Describingé, (r, s) according to Egs. (33) and (34) yields

. . N 1-sT7 .
pJS¢|(r,s)na(r) dS= ’\|lepr3 ;hi(r)[ 1Ts] n,(r) ds 6. Numerical examples

In this section, the position is selected according to

N 1—s i
= lim [ J hi(r)na(r)ds][ ] T
N*”; £l 1+s rTza[Jl—MZo—M] ., op=—ZR+ 2. (42)

N
= i Z HZ, H = pj hi(F)ny(r) dS, (38) We are initially interested in comparing the exact
N—oo €5 S frequency-domain description for the potential function in
Eq. (13) with that generated by the rational approximation

for the causal approximation & *H,,(s). F(j@)=c'(jél — A) b (& = vka) in Eq. (34). Here, the

As suggested in Ref. [12], the spatial integration in Eq. value ofn = 15 and the requirement thaj (r, s) be analytic
(38) can be evaluated using Gauss—Legendre quadraturdor Re{s} > 0 is equivalent toA having eigenvalues with
where the parameterdif are evaluated for a discrete set negative real parts. The approach for removing extraneous
of points onS r =r;, and the integration performed as a eigenvalues with positive real parts is discussed in Ref. [12].
weighted sum of thé, evaluated at these points thus yield- The value ohreflects this removal. On the basis of Eq. (13),
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Fig. 1. Rational approximation ap, vs. exact solutiorju = 0.1, C, = 0).
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Fig. 2. Rational approximation af, vs. exact solutiofix = 0.1, C, = —g/4).
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Fig. 7. Rational approximation of the Froude—Krylov (heave) force for a circular cylifidlgr= (pmag/2)H,,].

one expectsF(s) to have a pole at the origin and this
consistently manifested itself in the rational approximation
by an eigenvalue of nears= —10"°.

The corresponding time-domain functiogg(r,t) (with
f =t\/g/a) are generated according to Eq. (15) using the
trapezoidal rule and the causal approximation using Eq.
(36). It is the time derivative of the incident potential that
is used to derive the Froude—Krylov force and the height of
the incident wave on the free surface according to Eq. (14).
For this reason, we look at the solution feg o ®,(r, f)/ot
corresponding td,(f) = [sinfJH(f). The exact solution is
calculated by differentiating Eq. (16) to get

od(r,t)y _ (® ay(r,t— 1)
of _J of

For the rational approximation, the corresponding time
function is obtained from the derivative of Eq. (35),
ad,(£)/at = c"Ax(f) + c"bsy(f) wherex(f) was obtained
by integrating Eq. (35) using a fourth-order Runge—Kutta
technique with a step-size aff = 0.05.

do(m) d7
0

illustrates the evolution of the pressure distribution (within a
factor of pg) at u = 0.1 clearly illustrates the noncausality
of the ‘exact’ case and the approximation clearly possesses a
delay.

The situation whel€, = —g/4 is depicted in Fig. 2. The
resulting bias in the time-domain eliminates much of the
discontinuity in¢,(r,0) (all of it is eliminated on the free
surface, i.e. ag. — 0; see Fig. 3). The resulting addition of
—jC,/@ in the frequency domain greatly improves the accu-
racy of the imaginary part of the causal approximation. The
delay in the convolution with the unit frequency sinusoid is
largely mitigated and in the steady-state there is fairly good
agreement. The corresponding graphs far=0.01,

u =0.5 andu =0.9 are shown in Figs. 3—5. Note that
on the free surfacéu — O which is approximated in Fig.
3), the convolution in the lower right corner corresponds to
the time evolution of the free surface elevation correspond-
ing to an impressed sinusoid at the origin. A slight delay in
its buildup is in evidence as well as a small steady-state
amplitude error. The latter is in accord with the frequency

The results of these calculations are presented in Fig. 1domain discrepancy &a= 1; both effects are produced by

for u = 0.1, where initiallyC, = 0. The causal portions of
the time-domain potential exhibit excellent agreement and

causalization of the approximation. As— 1, the accuracy
of the rational approximation decreases in the frequency

in the frequency domain, the discrepancy can be largely domain but the effective contribution to the Froude—Krylov

attributed to the Fourier transform of the missing anticausal
part. This is approximately given byg ¢y (r.f) =
(UV2)H(—1f) or (1/2)j/® in the frequency domain (in any
event, the time-domain behavior &s+» *=oo dictates that

in the frequency domain as— 0). The convolution which

force also decreases.

The discrepancy between the two sets of curves in Figs.
2-5 can be attributed to three factors: (i) the shift@yn
the time domain; (ii) truncating the anticausal pargpfi.e.
setting ¢(r,t) =0, t < 0; (iii) truncating the order of
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the rational approximation and hence the order of the state-
space system at states. It has already been observed that
the effect of (i) largely offsets that of (ii) when considering
the imaginary part in the frequency domain. In order to
assess (iii) alone as a function @f we compare the causal
part of

971A¢(r > f) = gil[d’(r > f)|approx = o¢(r, t)|exacﬂ

where theC, factor is neglected in calculating the difference.
The behavior of this quantity is shown in Fig. 6 for various
values ofu. The accuracy of the rational approximation in
the time domain (for fixech) improves asu — 1.

In determining the Froude—Krylov force it is a weighted
spatial superposition ob¢,(r,t)/ot that is required or
jwd,(r, jw) in the frequency domain. This tends to mitigate
low-frequency errors and accentuate higher frequency ones
On this basis, one expects the methodology to perform
better at larger draughts which is consistent with the results
of Ref. [12] for the radiation problem.

The determination of the transient exciting force on a
circular cylinder of radius and drafta is considered with
its center located ak=6a, z=0 Eq. (15). The ‘exact’
calculation in the frequency domain uses a weighted version
of Eq. (13) in conjunction with Eqg. (17). The spatial inte-
grals are performed using a 48-point Gauss—Legendre rule.
The time-domain solutions were obtained by calculating a
numerical inverse Fourier transform in Eqg. (17) and
performing the convolution in Eq. (21) using the trapezoidal
rule. The rational approximations were obtained by apply-
ing the 48-point rule to Eq. (38). The convolution with the
sinusoidal wave height was accomplished through numeri-
cal integration of the effective system in Eqgs. (18) and (19).
The results are shown in Fig. 7. The rational approximation
captures the small-time behavior of the causal part of the
impulse response quite well. The convolution exhibits an
initial transient error relative to the ‘exact’ noncausal solu-
tion but in the steady-state, the increment is quite accurate.
Itis interesting to note that the noncausal nature of the exact
solution persists in spite of the shifting of the wave-height
datum six cylinder radii up-wave of the body center.

7. The transient Haskind relations

The transient form of the Haskind Relations [11] states
that

fould) = p J J[a(p'

B anat

¢Ra

r,t—m

)] dSdr (43

wheredr,, from Eq. (7), is the radiation potential due to an
impulsive velocity motion in modex. This can be inter-
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relations which are given by

= {jijs[¢|(r jow)

ﬂ(r j©)Pralr. jo)

f~Doz(j w) d) Ra

(r, jo)

] dS}Zo(jw). (44)

Making use of the boundary condition in Eq. (7), allows us
to identify the first term in Eq. (43) with Eq. (8) and the first
term in Eq. (44) with Eqg. (17). Using the remaining terms,
the scattered portion of the diffraction force can be written
as

fsa = Hsaljw) o,

2] 5

He (iw) =2 —i )
Asaljo) =2 —jap | (=0

I
We seek to realize the mapping frafg(t) to fs, () along the
lines of Egs. (18) and (19).

Note that d¢,(r,t)/on=n'(r)V¢, where d¢,/dx and
d¢,/0z can be determined as solutions of Eq. (23) Witk
0. By weighting the initial conditions in Table 1 using the
components of the normal, it is possible to realizg/on in
the form

9¢|
Jan

J)Ra) as

—L(r.9=> hinZ.

i=0

Assuming a similar series fopg,(r,2) can be developed
based on the results in Ref. [12] (with coefficiehtg), the
product in the integrand of Eq. (45) can be written as

d
- W Pralr,9 =
2=(s—1)/(s+1)

where theHg,; are determined by multiplying the two series.
This can be realized in the form of Eq. (34) and the output
fs.(t) can then be determined in a similar mannef; i¢t) in
Egs. (39) and (40) where the effective matricAs, ©e, Ce)

are chosen so that

Tt - av-ln X , s—17
1= o= 30 [ Haunag 255 |

Another possibility is to realize that Eq. (44) also applies
when the integral is performed around a bounding surface,
S., which encloses the body (after multiplication byl)
which follows from applying Green’s theorem. By choosing
S, to be a cylinder of large radius, an asymptotic expression
for ¢r, can be used. In 2D problems with left—right
symmetric motions,$g, o< %(r,0;jw) in Eq. (26) and
hence the coefficients; can be determined using the tech-

preted as the inverse Fourier transform of the steady-stateniques of Section 5.



C.J. Damaren / Applied Ocean Research 22 (2000) 267-280 279

8. Concluding remarks and making the change of varialpe= A7* gives

2k k 00

This paper has been motivated by the requirement of 9" F _ (=1 j o pul? Cos(p f1_ 2/72) 04K o
. . . . L = 2 p- " siny/p dp.

modeling the transient relationship between an incident 97 €+ Jo P

sea state and the exciting forces on a floating body. It has _ .

been observed that this mapping is noncausal since thelntroducing the new variable = 1/7* leads to

forces acting the body arise before the datum wave height ™
is “turned on.” Since this is problematic in a simulation F :J ut*te P COS(IOU\/1 - qu)pe sin,/p dp.
environment, we have endeavored to develop an (optimal) 0
causal approximation. Using the relationship in Eq. (46) and defining
Although an initial transient error exists relative to the
noncausal solution, the steady-state accuracy for sufficiently a(u) = /1 — u?,
low frequencies is quite good. Since the diffraction mapping
is linear time-invariant, it can be realized as a nonhomo- H,(p, u, u) = ué*2 exp —pu(u + ja(u))]
geneous system of first-order constant-coefficient ODEs
with the wave height datum as the forcing function. These X M([1, 2, —2jpua(w)] = u e "“M[a, b, h(u)]
are highly amenable to computer implementation of the A7
simulation problem. The ODEs were developed using an
analytical approach to constructing rational approximations WhereA = —(€ + 2), f(u) = up(u + ja(w)), a=1,b=1,
for the diffraction mapping in the frequency domain. This andh(u) = —2jupa(u), leads to
was accomplished using the fourth-order time-varying ODE o
which the 2D Green’s functions relative to an impulsive F = a(w) | He(p, , wp®** siny/p dp, (49
source and an impulsive wave height were shown to satisfy. 0
The realization of the diffraction mapping can be readily . .
combined with similar models for the floating body (_1)k72ka_k _ a(M)J He(p, 11, wp® <+ sin./p dp,
dynamics (forces to body motion mapping) and the radiation 97 0
impedance (body velocities to radiation forces mapping).
Future work will address the combination of these elements

using the variational principle described in Ref. [12] in The functionH defined this way is known to satisfy the
conjunction with the finite element method for capturing general confluent equation (see Eq. (3.11) in [13] or [25,

complex ship geometries in two dimensions. Itis anticipated 13.1.35, pp. 505] in [16]) which in the present case takes the
that this can form the basis for a computationally efficient ¢,

“transient strip theory.”

(49)
k=123,...

9°H 2 oH
27 [2(@ +1) - “pu]—e
ou au
Appendix A. Proof of Lemma 2
+[p2_ 2pu@ + 1) . £ +3Ze+2]H£:0.
Since many steps in the proof are common to that in Ref. u u
[13] for the 3D source function, we emphasize the differ- Lettin
ences. In the original proof, a key observation was that the 9
Bessel function of zeroth order could be expressed as 1 d 139
Jo(2 = exp(—j2M[1/2, 1, 2jz] where M is the confluent u= 2’ u . 27 o
hypergeometric function (or Kummer's function) [16]. ) )
The analogous result used here is that 0 ETsi }7_63_
oz 4 ar 4 9P

cosz= zexp j2M[1, 2, —2jz]. (46) this becomes
Only the case with cqél — ,uz)\_si.r?\_/Xrin the integrand is. 1 50%H, p 7\ 5H, 24 DL + 2
treated. The other three possibilities can be handled simi- 7 — = (€ + 1) o + &+ D+ 2)7He
larly since sinz = zexp(jz)M[1, 2, —2jz] also.

Begin by noting that Eq. (22) implies — pur® 3::15 — H, + 2pu(l + 1)PH,. (50)
T
aZkF 00 2 B )
P (—D" Jo AR cog /1 — p?) sinV/AT dA, Now multiply both sides byx()p®** sin,/p and integrate

with respect t@ from 0 tooo. Using Egs. (48) and (49), we
k=0,12,..., note the appearance Bfand its derivatives on the left-hand



280
side of Eq. (50) so that it becomes:
1 40%F

AT o2 +(£+Z>TE+(«€+1)(«€+2)TF

0 (*® .
=t Jo a(pHe (P, WP’ 2 sinyp dp

+2ur? @ + 1) J , a(w)He (p, p, WPt 2 sin,/p dp.

(o)

o @ He(p. 1 wp® " siny/p dp

The integrals on the right-hand side are available from Eq.
(49) which leads to Eq. (23) after simplification™
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