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2 Rigid Body Dynamics

2.1 Dynamics of a Particle

We consider a particle of mass m which is located at a position r(¢). It is subject to a force

f(t). The momentum of the particle is p = mi Newton’s second law of motion states that

p=1

or

mi = £ 1)

—

if it is assumed that m is constant.

The angular momentum (about O) of the particle is defined as:

A .
h, Srxp=mrxz

—

The time derivative of the angular momentum is given by

B, = mixi+ mrxi
= rxf
Hence,
: A
Bo=G,, Go2rxf 2)

The quantity G, is the torque (about O) produced by f. In words, the time derivative of

the angular momentum is equal to the external torque.
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2.2 Dynamics of a System of Particles

Consider a system of particles with masses m;, © = 1--- N, and positions r;.

The forces acting on m; can be decomposed into two groups:

(a) the external force Fj;

(b) the internal forces stemming from the other N — 1 masses. We denote these by f;; and
take f;; = 0. Hence, f;; is the force exerted on m; by m;. The use of Newton’s third law
asserts that

fij = =1L (3)
We define the location of the centre of mass by

N
D1 m;X;

N N
o= Q_mi)/Y mi= ——— (4)
i=1 i=1 m
Newton’s second law applied to the ith mass gives:
N
mifi = Ei + )£y (5)
7j=1

Now, add together the above relation for each of the N masses:

N N N N
>omii=3 Ei+) > &y
i=1 i=1

i=1j=1

The last term vanishes by virtue of Eq. (3); therefore,

N N
Z m;L; = Z F; (6)
i=1 i=1

Using the definition of the centre of mass, (4), we then have

N
mi.=E, E£Y F, (7)

=1
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which has the same form as Newton’s second law for a particle.
Now let us introduce the angular momentum of the system. For the ith mass,

h; = m;r; X 1;
and for the entire system, the angular momentum (about O) is

N
by £ 3 mix; x ¥; (8)

i=1
Taking the time derivative of both sides gives,
. N
1}0 = Z m;T; X T; 9)
i=1

Now, let us use the expression (5) to get

N N
h, = ZI‘, X (EZ + Z_.ZJ)
=1 j=1
But,
N N N N
2rix Y fii=5> > (m—1)xfy
i=1 j=1 =1 j=1

If we assume that f;; acts along the line connecting m; to m;, (r;—r;), then the above double
summation must vanish.
Therefore, the time derivative of the system angular momentum satisfies:
. A N
=G, G2y x5xE (10)
i=1

In words, the sum of the torques about O is equal to the time derivative of the system
angular momentum about O.

Now, we would like to express the motion of the particle in terms of position relative to the
centre of mass. Let us write
L =Ic+pi (11)

Using (8) and (11), the system angular momentum can be expressed as follows:

—

N
h, = Zmz’_l:z' X T;
i=1
N
= > m [(Ic + i) x (T + éz’)]
i=1
N N
= Q_mite xfo + 1o x (3 mig)
i1 i=1

N N
+(Z m;p;) X I, + Zmigi X D

=1 i=1
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The second and third terms must vanish by virtue of the fact that

N N
D migi =) midi =0
i=1 i=1
since the p; are defined with respect to the centre of mass. Therefore,
b, = mr x i + he (12)

where
P
h. = Z m;e; X O;
i=1
is the angular momentum with respect to the centre of mass. The total angular momentum

with respect to O is equal to the angular momentum of the centre of mass plus the the
angular momentum with respect to the centre of mass.

Now, take the time-derivative of the above expression and use (7)

l_.}o = m}:cxilfc + 1_:'!'6
= r.xE + h (13)
But, from (10),
N
hy=G, = ) nxE
i=1
N

= > (t.+p)xE

i=1

N
= .xFE + ) p xF, (14)

=1

Comparing (13) and (14), we must have

—

N
he=G., G =) pxFE (15)
i=1
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Hence, the torque about the centre of mass is equal to the time derivative of the angular
momentum with respect to the centre of mass.

Summary
translational equation:
N
mi. =E =} F (7)
i=1
rotational equation: ‘
h. =G, (15)

where

N N
l;lc:zzlmigixgia Cjc:ZgiXEi
i= i=1

2.3 Rigid Body Dynamics

Translational Dynamics

Definition. A rigid body is a continuum in which the distance between any two points on
the body remains fixed.

We shall take a rigid body to be the limiting case of a system of particles in which the number
of particles becomes infinitely large and their masses become infinitesimal. Therefore,

e — e
m; — dm=o(p)dV

e

i~ dE=f(g)dV

Jo

-
1

<
Il
=

Here, dV is an infinitesimal volume element and o(p) is the mass density at a point p. The

force per unit volume is f.
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For a system of point masses, the translational equation is from §2, Eq. (6):

N N
> miti =) F;
=1 =1

Making the changes indicated above, it becomes:

/ngm=/vgdv (16)

From §2, Eq. (4), the centre of mass for a system of particles, r., is defined by

N
mr. = Z m;xr;
i=1
In the continuum case, this becomes
mr, = / rdm (17)
1%
Differentiating this twice with respect to time allows Eq. (1) to be written as
. A
mi.=E, E2 [ fav (18)
1%

where F is the total force acting on the rigid body

Eq. (18) is of the same form as the point mass result. The rigid body behaves (in translation)
like a particle if its mass is lumped at the centre of mass. This lends credence to the two
body solution of §3 when applied to finite-size space vehicles. The justification for treating
the other body (i.e., the earth) as a point mass will be given in §7.

The Angular Momentum of a Rigid Body

The angular momentum of a system of particles (with respect to the c.m.) is given by
N
h. = Z m;; X P
i—1

7

Letting the number of particles N — oo, this becomes
b= [ o pdm (19)
1%

The time derivative of p (as seen in the inertial frame) can be written as follows:

p=p+wxp (20)
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where w is the angular velocity of the rigid body with respect to the inertial reference frame.

Because of the rigid body hypothesis, Ev: 0. Therefore, the angular momentum becomes
he = /EX(‘:’XB)dm
%
= —/ (gxgxcg)dm (21)
1%

Let us express the remaining quantities in a body-fized frame. For the duration of the notes,
this frame will be represented as

by
’Eb = 92
bs

Furthermore, the origin of this frame is the centre of mass. The position vector, angular
velocity, and angular momentum become:

e=Fip, w=F,w, h.=F h, (22)

—

An omitted subscript on component matrices shall designate the body-fixed frame. Using
the above definitions in (6), we get the following component form:

h, = —/ (pxpxw) dm = [—/ pp* dm] w (23)
1% 1
It can be verified by direct expansion that
—p" p* = (p"p)1 — pp"
The quantity

1 < /V (6" p)1 = pp"] dm

(03 +03)  —pip2 —pP1P3
= /V —p2pr (P4 p3)  —paps | olp1, p2, ps) dV (24)
—pP3pP1 —psp2 (P} +p3)

is called the moment of inertia matriz.

Therefore, we can write the system angular momentum as

h, = Iw (25)
Ly Ly Iis W1
= Iy Ip Iy Wa

I3 I3p I3 w3



Ricip Bopy DyNAMICS 8

The Inertia Matrix

(1) It can be defined with respect to any body-fixed coordinate system. However, in order to
write the angular momentum in the form used above, (25), this frame must have its origin
at the centre of mass.

(2) The inertia matrix is real and symmetric:
I=1"
Furthermore, it is positive-definite:
xIx > 0 (x #0)

These two properties ensure that the eigenvalues of I are real and positive.

The moment of inertia matrix is a constant property of a rigid body. It fulfills the same role
in rotational dynamics as the mass, m, does in translational dynamics.

Rotational Transformation Theorem

Consider two frames F; and F, which have their origins at the centre of mass of a rigid
body. They are related by a rotation matrix:

Fo=CnF

Recall that
Cgl = 02_11 = Ci2

A point on the rigid body can be expressed in either frame:
L= E{Pl = EgPQ
The inertia matrix can be defined with respect to both frames as follows:

I, = /V[(Prirpl)l_lhplT] dm
I, = /V[(PQTP2)1_P2P§] dm

We desire a relationship between these two expressions. Since, p, = Co;p;, We can write

L = /‘/[(021P1)T(021P1)1—(021P1)(C21P1)T] dm
= /V[(Pfcglczlm)l—(021P1P1TC§1)] dm
But,

(P C5Caup)1 = pipd
= P1TP1 Ca Cle
= Cgy Prirpl Cgl
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Therefore,
I, = C21/V [(P1TP1)1 - P1P1T] dm CQTl
= CuL,CL (26)

which is the rotational transformation theorem.

Principal Axes

Definition. A body-fixed frame in which the moment of inertia matrix is diagonal, i.e.,

I 0 0
I=| 0 I, O
0 0 I

is called a principal axes frame. The diagonal elements of I are called the principal moments
of inertia.

If the moment of inertial matrix is not diagonal, then the principal moments of inertia can
be determined by considering the eigenvalue problem for the inertia matrix:

)\iei:Iei, ’L:1,2,3

Since I is symmetric, the eigenvectors are orthonormal:

Al l, 1=

Here, 6;; is the Kronecker delta. The matrix form of this relationship is
E'E=1, E=[e; e, e
The matrix E is the eigenmatriz of I. The eigenvectors also satisfy
e/ Ie; = \;0;;

which can be compactly written as

A 00
A=ETIE, A=|0 X 0
0 0 X

Since E~! = ET, the above equation implies that the inertia matrix can be written as
I =EAE"

Comparing this equation with (26), we can conclude that the E is the rotation matrix from
the original frame used to calculate I to the principal axis frame in which the inertia matrix
is diagonal.
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Since I is positive-definite, the eigenvalues are positive. The eigenvalues are the principal
moments of inertia.

Rotational Kinetic Energy

The rotational kinetic energy of a rigid body is given by
T=1%/[ b pdm (27)

Substituting (20) (noting that p = 0) gives

T =} [ @ p)(w"p)dm
= 3 [ (p*w)"(p*w) dm
w’ [— /Vpo>< dm] w
wllw (28)

N N

In a principal axis frame this takes on the simple form

T = (L} + Lw) + Luws;) (29)

2.4 Euler’s Equation

It has been demonstrated that _
h, = G,

— —

where h, is the angular momentum (with respect to the centre of mass) and G, is the total

external torque about the c.m. For a rigid body, the former can be expressed in a body-fixed
frame F} as

b, = F/Tw
Now,
h. =h.+wxh (30)
and hence .
h.+wxh, =G, (31)

If all quantities are expressed in the body-fixed frame F}, then

h. +w*h, = G, (32)
Substituting (10), h, = Iw, into this equation gives Euler’s Equation:

Iw + wlw = G, (33)

If we assume that F, is a principal axis frame, then we can write the above in component
form as
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Ildjl + (13 — Ig)wgwg, = G1
IQ(,Z}Q + (Il - I3)Ld1(.d3 = G2
13(,:)3 + (IQ — Il)wlwz = Gg

where we have used

L 0 0 w1 G1
I= 0 ]2 0 , W= W9 s GC = G2
0 0 I w3 | Gs

The solution of these equations for w combined with a solution of
Cpi = —w*Cy;

for Cy; (the rotation matrix relating vectors in an inertial frame F; to the body frame Fy)
yields a complete description for the attitude.

Lastly, we note that the external torque can be written as
Ge= [ pxfdV =F[G., G.= [ p*fav
1% 1%

where f are the components of the external force per unit volume, f, expressed in Fj.



